DOI QR코드

DOI QR Code

Lake's Function on Control of Refractory Dissolved Organic Matter caused by Upstream Rivers to Andong Lake and JinYang Lake

안동호와 진양호의 상류하천발생 난분해성유기물질 제어에 대한 호소의 기능

  • 최병우 (국립안동대학교 환경공학과 대학원) ;
  • 강미아 (국립안동대학교 환경공학과) ;
  • 손호용 (국립안동대학교 식품영양학과)
  • Received : 2011.06.20
  • Accepted : 2011.08.26
  • Published : 2011.08.31

Abstract

Variations of load in both DOM and RDOM of inflowing rivers to lakes were in the range of 5.01-7.29(${\times}10^2$ kg/day) for AD lake and 1.23-3.75(${\times}10^3$ kg/day) for JY lake during the research period excluding the period directly affected by the strong rainy season and the monsoon and typhoon season. We observed a good relationship($R^2$ > 0.8) between SS load and DOM load (including RDOM) in both inflowing rivers to JY lake. Therefore, it was determined that SS would be an alternative parameter with a rapid and energy-efficient method for the analysis of both DOC and RDOC, which require the analytical equipment and a long time period. Both AD lake and JY lake may act as a DOM(including RDOM) source through primary production in the fall season. Because AD lake and JY lake may not act as a DOM buffer zone, both lakes couldn't control the DOM and RDOM in spring before the rainy season. Therefore to improve water quality in downstream rivers is needed to remove pollutants such as DOM and RDOM before inflowing to these lakes in upstream rivers, or to have the unique landscape of wetlands as a buffer zone.

집중강우, 장마 및 태풍의 직접적인 영향을 배재한 기간 동안에 안동호와 진양호의 상류하천으로부터 발생되는 DOM과 RDOM의 부하량(DOC 기준)은, 안동호 상류하천에서 5.01-7.29(${\times}10^2$ kg/day)였고, 진양호 상류하천에서 1.23-3.75(${\times}10^3$ kg/day)이었다. 진양호 상류 두 개의 하천에서 진양호로 유입되는 DOM과 RDOM의 발생비율은 SS 발생비율과 높은 상관성($R^2$ > 0.8)을 나타내었으므로 장비사용과 장기간의 실험기간을 요구하는 DOC 및 RDOC 분석에 대체할 수 있는 신속 경제적인 지표로써 SS 수질인자를 활용할 수 있을 것으로 기대한다. 안동호와 진양호는 여름철 강한 강우 이후기간동안에 DOM 및 RDOM의 증가를 야기하고, 여름철 강우 이전 기간동안에도 DOM 및 RDOM에 대한 제어기능을 가지지 못하였다. 따라서 이들 두 호소수의 DOM 및 RDOM에 대한 수질적 개선을 위해서는 호소 상류유역의 비점오염원 자체의 제거가 이루어지거나, 호소로 유입되기 전에 이를 제어할 수 있는 완충지의 확보가 필요하다.

Keywords

References

  1. Arp CD. Gooseff MN. Baker MA. Wurtsbaugh W. 2006. Surface-waterhydro dynamics and regimes of a small mountain streamlake ecosystem. Journal of Hydrology 329: 500-513. https://doi.org/10.1016/j.jhydrol.2006.03.006
  2. Battin TJ. Luyssaert S. Kaplan LA. Aufdenkampe AK. Richter A. Tranvik LJ. 2009. The boundless carbon cycle. Nat. Geosci. 2: 598-600. https://doi.org/10.1038/ngeo618
  3. Boyer EW. Hornberger GM. Bencala KE. McKnight DM. 1997. Response characteristics of DOC flushing in an alpine catchment. Hydrol. Proc., 11: 1635-1647. https://doi.org/10.1002/(SICI)1099-1085(19971015)11:12<1635::AID-HYP494>3.0.CO;2-H
  4. Collins MR. Amy CL Steelink, C. 1986. Molecular weight distribution, carboxylic acidity, and humic substances content of aquatic matter: implication for removal during water treatment. Environ, Sci, Technol. 20: 1018-1032.
  5. Gergel, SE. Turner MG. Kratz TK. 1999. Dissolved organic carbon as an indicator of the scale of watershed influence on lakes and rivers, Ecol. Appl., 9: 1377-1390. https://doi.org/10.1890/1051-0761(1999)009[1377:DOCAAI]2.0.CO;2
  6. Hornberger, GM. Bencala KE. Mcknight DM. 1994. Hydrological controls on dissolved organic carbon during snowmelt in the Snake River near Montezuma, Colorado. Biogeochemistry 25: 147-165. https://doi.org/10.1007/BF00024390
  7. Huck PM. 1990. Measurement of biodegradable organic matter and bacterial growth potential in drinking water. Jour. AWWA 82(7): 78-86.
  8. Imai A, Fukushima T, Matsushige K. Kim Y. 2001. Fractionation and characterization of dissolved organic matter in a shallow eutrophic lake, its inflowing rivers and other organic matter sources. Water Research, 35(17): 4019-4028 https://doi.org/10.1016/S0043-1354(01)00139-7
  9. Ito M. Mitchell M. Driscoll C. Newton R. Johnson C. Roy K. 2007. Controls on surface water chemistry in two lakewatersheds in the Adirondack region nitrogen solute of New York: differences in sources and sinks. Hydrol. Proc., 21: 1249-1264. https://doi.org/10.1002/hyp.6297
  10. Kang MA. Choi BW. Lee JK. 2010. Correlation analysis on the runoff pollutants from a small plot unit in an agricultural area. Environ. Eng. Res. 15(4): 191-195. https://doi.org/10.4491/eer.2010.15.4.191
  11. Kaste O. Stoddard J. Henriksen A. 2003. Implication of lake water residence time on the classification of Norwegian surface water sites into progressive stages of nitrogen saturation, Water, Air, Soil Pollut. 142: 409-424. https://doi.org/10.1023/A:1022015814800
  12. Kim S, Hong S. Kim G. Sohn J. Choi E. 2008. Source identification and characterization of the accumulating non-biodegradable organics in Korean reservoirs. Journal of Environmental Management 88: 1056-1065. https://doi.org/10.1016/j.jenvman.2007.05.011
  13. Kim YH. Lee SH. Kim JH. Park JW. Choi KS. 2006. Charzterization of recalcitrant dissolved organic matter in lake and inflow river waters. Environ. Eng. Res. 11(4): 191-193.
  14. Malcom RL. 1985. The Geochemistry of stream fulvic and humic substances. In: Humic Substances in Soil, Sediment and Water: Geochemistry, Isolation and Characterization. G.R. Aiken, D.M. McKnight, R.L. Wershaw and P. MacCarthy(eds). Wiley-Intersciences, New York: 181-209
  15. Mash H. Westerhoff PK. Baker LA. Nieman RA. Nguyen ML. 2004. Dissolved organic matter in Arizona reservoirs : assessment of carbonaceous sources. Organic Geochemistry 35: 831-843. https://doi.org/10.1016/j.orggeochem.2004.03.002
  16. Meybeck, M. 1982. Carbon, nitrogen, and phosphorus transport by world rivers, Am. J. Sci. 282: 401-450. https://doi.org/10.2475/ajs.282.4.401
  17. Mulholland, PJ. Hill WR. 1997. Seasonal patterns in streamwater nutrient and dissolved organic carbon concentrations: Separating catchment flow path and instream effects. Water Resour. Res. 33: 1297-1306. https://doi.org/10.1029/97WR00490
  18. Onstad GD. Canfield DE. Quay PD. Hedges JI. 2000. Sources of particlulate organic matter in rivers from the countinental USA : lignin phenol and stable isotope compositions. Geochimica et Cosmochimica Acta 64: 3539-3564. https://doi.org/10.1016/S0016-7037(00)00451-8
  19. Palmer MA. Poff NL. 1997. The influence of environmental heterogeneity on Pattern-s and processes in streams. J. N. Am. Benthol. Soc. 16: 169-173. https://doi.org/10.2307/1468249
  20. Schlesinger WH. Melack JM. 1981. Transport of organic carbon in the world rivers. Tellus 33: 172-187. https://doi.org/10.1111/j.2153-3490.1981.tb01742.x
  21. Servais P. Anzil A. Ventresque C. 1989. Simple method for determination of biodegradable dissolved organic carbon in water. Applied and Environmental Microbiology 55: 2732-2734.
  22. 강미아, 최병우, 유재정. 2010. 강우시 비점오염원의 오염부하특성. 지질공학회지 20(4): 401-407.
  23. 낙동강수계관리위원회, 2010. 남강댐 상류지역 비점오염원 파악 및 대책수립(1), 낙동강수계 2010년도 환경기초조사사업. pp 236-244.
  24. 박현진, 진은정, 정태만, 주현, 이재화. 2009. 광합성 미세조류 Nanochloropsis oculata 최적 배양조건. Appl. Chem. Eng. 21(6) :659-663.
  25. 허진, 신재기, 박성원. 2006. 하천 및 호소 수질 관리를 위한 용존 자연유기물질 형광특성 분석. 대한환경공학회지 28(9): 940-948.
  26. 환경부, 2008. 수질오염공정시험방법