DOI QR코드

DOI QR Code

Production of methionine γ- lyase in recombinant Citrobacter freundii bearing the hemoglobin gene

  • Kahraman, Huseyin (Department of Biology, Faculty of Art and Science, Inonu University) ;
  • Aytan, Emel (Department of Biology, Faculty of Art and Science, Inonu University) ;
  • Kurt, Ash Giray (Department of Biology, Faculty of Art and Science, Inonu University)
  • Received : 2011.03.16
  • Accepted : 2011.07.15
  • Published : 2011.09.30

Abstract

The production of antileukemic enzyme methionine ${\gamma}$-lyase (MGL) in distinctly related bacteria, Citrobacter freundii and in their recombinants expressing the Vitresocilla hemoglobin (VHb) has been studied. This study concerns the potential of Citrobacter freundii expressing the Vitreoscilla hemoglobin gene (vgb) for the methionine ${\gamma}$- liyase production. Methionine ${\gamma}$- liyase production by Citrobacter freundii and its $vgb^-$ and $vgb^+$ bearing recombinant strain was studied in shake-flasks under 200 rpm agitation, culture medium and $30^{\circ}C$ in a time-course manner. The $vgb^+$ and especially the carbon type had a dramatic effect on methionine ${\gamma}$- liyase production. The $vgb^+$ strain of C. freundii had about 2-fold and 3.1-fold higher levels of MGL than the host and $vgb^-$ strain, respectively.

Keywords

References

  1. Geckil, H., Gencer, S., Ates, B., Ozer, U., Uckun, M. and Yilmaz, I. (2006) Effect of Vitreoscilla hemoglobin on production of a chemotherapeutic enzyme, L-asparaginase, by Pseudomonas aeruginosa. Biotechnol. J. 1, 203-208. https://doi.org/10.1002/biot.200500048
  2. Takakura, T., Ito, T., Yagi, S., Notsu, Y., Itakura, T., Nakamura, T., Inagaki, K., Esaki, N., Hoffman, R. M. and Takimoto, A. (2006) High-level expression and bulk crystallization of recombinant L-methionine $\gamma$-lyase, an anticancer agent. Appl. Microbiol. Biotechnol. 70, 183-192. https://doi.org/10.1007/s00253-005-0038-2
  3. Takakura, T., Mitsushima, K., Yagi, S., Inagaki, K., Tanaka, H., Esaki, N., Soda, K. and Takimotoa, A. (2004) Assay method for antitumor L-methionine $\gamma$-lyase: comprehensive kinetic analysis of the complex reaction with L-methionine. Anal. Biochem. 327, 233-240. https://doi.org/10.1016/j.ab.2004.01.024
  4. Weimer, B., Seefeldt, K. and Dias, B. (1999) Sulfur metabolism in bacteria associated with cheese. Anton. Leeuw. 76, 247-261. https://doi.org/10.1023/A:1002050625344
  5. Manukhov, I. V., Mamaeva, D. V., Morozova, E. A., Rastorguev, S. M., Faleev, N. G., Demidkina, T. V. and Zavilgelsky, G. B. (2006) L-Methionine $\gamma$-lyase from Citrobacter freundii: cloning of the gene and kinetic parameters of the enzyme. Biochem. (Moscow) 71, 361-369. https://doi.org/10.1134/S0006297906040031
  6. Nikulin, A., Revtovich, S., Morozova, E., Nevskaya, N., Nikonov, S., Garber, M. and Demidkina, T. (2008) Highresolution structure of methionine $\gamma$-lyase from Citrobacter freundii. Acta Cryst. 64, 211-218.
  7. Kudou, D., Misaki, S., Yamashita, M., Tamura, T., Takakura, T., Yoshioka, T., Yagi, S., Hoffman, R. M., Takimoto, A., Esaki, N. and Inagaki, K. (2007) Structure of the antitumour enzyme L-methionine γ-lyase from Pseudomonas putida at 1.8$A^{circ}$ Resolution. J. Biochem. 141, 535-544. https://doi.org/10.1093/jb/mvm055
  8. Manukhov, I. V., Mamaeva, D. V., Rastorguev, S. M., Faleev, N. G., Morozova, E. A., Demidkina, T. V. and Zavilgelsky, G. B. (2005) A gene encoding L-methionine $\gamma$-lyase is present in Enterobacteriaceae family genomes: Identification and characterization of Citrobacter freundii L-methionine $\gamma$-lyase. J. Bacteriol. 187, 3889-3893. https://doi.org/10.1128/JB.187.11.3889-3893.2005
  9. Mamaeva, D. V., Morozova, E. A., Nikulin, A. D., Revtovich, S. V., Nikonov, S. V., Garberb, M. B. and Demidkinaa, T. V. (2005) Structure of Citrobacter freundii L-methionine $\gamma$-lyase. Acta Cryst. Section F 61, 546-549. https://doi.org/10.1107/S1744309105015447
  10. Yoshimura, M., Nakano, Y. and Koga, T. (2002) L-Methionine- $\gamma$-lyase, as a target to inhibit malodorous bacterial growth by trifluoromethionine. Biochem. Bioph. Res. Co. 292, 964-968. https://doi.org/10.1006/bbrc.2002.6747
  11. Coombs, G. H. and Mottram, J. C. (2001) Trifluoromethionine, a prodrug designed against methionine $\gamma$-lyase-containing pathogens, has efficacy in vitro and in vivo against Trichomonas vaginalis. Antimicrob. Agents. Chem. 45, 1743-1745. https://doi.org/10.1128/AAC.45.6.1743-1745.2001
  12. Kokkinakis, D. M., Schold, S. C., Hori, H. and Nobori, T. (1997) Effect of long-term depletion of plasma methionine on the growth and survival of human brain tumor xenografts in athmic mice. Nutr. Cancer, 29, 195-204. https://doi.org/10.1080/01635589709514624
  13. Takakura, T., Takimoto, A., Notsu, Y., Yoshida, H., Ito, T., Nagatome, H., Ohno, M., Kobayashi, Y., Yoshioka, T., Inagaki, K., Yagi, S., Hoffman, R. M. and Esaki, N. (2006) Physicochemical and pharmacokinetic characterization of highly potent recombinant L-methionine $\gamma$-lyase conjugated with polyethylene glycol as an antitumor agent. Cancer Res. 66, 2807-2814. https://doi.org/10.1158/0008-5472.CAN-05-3910
  14. Lishko, V. K., Lishko, O. V. and Hoffman, R. M. (1993) Depletion of serum methionine by methioninase in mice. Anticancer Res. 13, 1465-1468.
  15. Borenshtein, D. and Schauer, D. B. (2006) The genus Citrobacter. Prokaryotes 6, 90-98.
  16. Wang, J., Chang, S., Chen, Y. and Luh, K. J. (2000) Comparison of antimicrobial susceptibility of Citrobacter freundii isolates in two different time periods. Microbiol. Immunol. Infect. 33, 258-262.
  17. Geckil, H., Gencer, S., Kahraman, H. and Erenler, S. O. (2003) Genetic engineering of Enterobacter aerogenes with Vitreoscilla hemoglobin gene: cell growth, survival, and antioxidant enzyme status under oxidative stress. Res. Microbiol. 154, 425-431. https://doi.org/10.1016/S0923-2508(03)00083-4
  18. Geckil, H., Stark, B. C. and Webster, D. A. (2001) Cell growth and oxygen uptake of Escherichia coli and Pseudomonas aeruginosa are differently affected by the genetically engineered Vitreoscilla hemoglobin gene. J. Biotechnol. 85, 57-66. https://doi.org/10.1016/S0168-1656(00)00384-9
  19. Yang, J., Webster, D. A. and Stark, B. C. (2005) ArcA Works with Fnr as a positive regulator of Vitreoscilla (bacterial) hemoglobin gene expression in Escherichia coli. Microbiol. Res. 160, 405-415. https://doi.org/10.1016/j.micres.2005.03.004
  20. Kurt, A. G., Aytan, E., Ozer, U., Ates, B. and Geckil, H. (2009) Production of L- DOPA and dopamine in recombinant bacteria bearing the Vitreoscilla hemoglobin gene. Biotechnol. J. 4, 1077-1088. https://doi.org/10.1002/biot.200900130
  21. Tanaka, H., Imahara, H., Esaki, N. and Soda, K. (1980) Selective determination of L-methionine and L-cysteine with bacterial L-methionine $\gamma$-lyase and anti-tumor activity of the enzyme. J. Appl. Biochem. 2, 439-444.
  22. Soda, K. (1968) Microdetermination of D-amino acids and D-amino acid oxidase activity with 3-methyl-2-benzothiazolone hydrazone hydrochloride. Anal. Biochem. 25, 228-235. https://doi.org/10.1016/0003-2697(68)90095-X

Cited by

  1. Hemoglobin: A Nitric-Oxide Dioxygenase vol.2012, 2012, https://doi.org/10.6064/2012/683729
  2. Recent applications of Vitreoscilla hemoglobin technology in bioproduct synthesis and bioremediation vol.99, pp.4, 2015, https://doi.org/10.1007/s00253-014-6350-y
  3. Improved biomass and protein production in solid-state cultures of an Aspergillus sojae strain harboring the Vitreoscilla hemoglobin vol.99, pp.22, 2015, https://doi.org/10.1007/s00253-015-6851-3