References
- Walther, C., Guenet, J. L., Simon, D., Deutsch, U., Jostes, B., Goulding, M. D., Plachov, D., Balling, R. and Gruss, P. (1991) Pax: a murine multigene family of paired box-containing genes. Genomics 11, 424-434. https://doi.org/10.1016/0888-7543(91)90151-4
- Walther, C. and Gruss, P. (1991) Pax-6, a murine paired box gene, is expressed in the developing CNS. Development 113, 1435-1449.
- Hill, R. E., Favor, J., Hogan, B. L., Ton, C. C., Saunders, G. F., Hanson, I. M., Prosser, J., Jordan, T., Hastie, N. D. and van Heyningen, V. (1992) Mouse small eye results from mutations in a paired-like homeobox-containing gene. Nature 355, 750. https://doi.org/10.1038/355750a0
- Kioussi, C., O'Connell, S., St-Onge, L., Treier, M., Gleiberman, A. S., Gruss, P. and Rosenfeld, M. G. (1999) Pax6 is essential for establishing ventral-dorsal cell boundaries in pituitary gland development. Proc. Natl. Acad. Sci. U.S.A. 96, 14378-14382. https://doi.org/10.1073/pnas.96.25.14378
- Dohrmann, C., Gruss, P. and Lemaire, L. (2000) Pax genes and the differentiation of hormone-producing endocrine cells in the pancreas. Mech. Dev. 92, 47-54. https://doi.org/10.1016/S0925-4773(99)00324-X
- Maekawa, M., Takashima, N., Arai, Y., Nomura, T., Inokuchi, K., Yuasa, S. and Osumi, N. (2005) Pax6 is required for production and maintenance of progenitor cells in postnatal hippocampal neurogenesis. Genes Cells 10, 1001-1014. https://doi.org/10.1111/j.1365-2443.2005.00893.x
- Osumi, N., Shinohara, H., Numayama-Tsuruta, K. and Maekawa, M. (2008) Concise review: Pax6 transcription factor contributes to both embryonic and adult neurogenesis as a multifunctional regulator. Stem. Cells 26, 1663-1672. https://doi.org/10.1634/stemcells.2007-0884
- Sakurai, K. and Osumi, N. (2008) The neurogenesis- controlling factor, Pax6, inhibits proliferation and promotes maturation in murine astrocytes. J. Neurosci. 28, 4604-4612. https://doi.org/10.1523/JNEUROSCI.5074-07.2008
- Warren, N., Caric, D., Pratt, T., Clausen, J. A., Asavaritikrai, P., Mason, J. O., Hill, R. E. and Price, D. J. (1999) The transcription factor, Pax6, is required for cell proliferation and differentiation in the developing cerebral cortex. Cereb. Cortex 9, 627-635. https://doi.org/10.1093/cercor/9.6.627
- Simpson, T. I. and Price, D. J. (2002) Pax6; a pleiotropic player in development. Bioessays 24, 1041-1051. https://doi.org/10.1002/bies.10174
- Zhang, J., Lu, J. P., Suter, D. M., Krause, K. H., Fini, M. E., Chen, B. and Lu, Q. (2010) Isoform- and dose-sensitive feedback interactions between paired box 6 gene and delta- catenin in cell differentiation and death. Exp. Cell. Res. 316, 1070-1081. https://doi.org/10.1016/j.yexcr.2010.01.006
- Shimizu, N., Watanabe, H., Kubota, J., Wu, J., Saito, R., Yokoi, T., Era, T., Iwatsubo, T., Watanabe, T., Nishina, S., Azuma, N., Katada, T. and Nishina, H. (2009) Pax6-5a promotes neuronal differentiation of murine embryonic stem cells. Biol. Pharm. Bull. 32, 999-1003. https://doi.org/10.1248/bpb.32.999
- Mascarenhas, J. B., Young, K. P., Littlejohn, E. L., Yoo, B. K., Salgia, R. and Lang, D. (2009) PAX6 is expressed in pancreatic cancer and actively participates in cancer progression through activation of the MET tyrosine kinase receptor gene. J. Biol. Chem. 284, 27524-27532. https://doi.org/10.1074/jbc.M109.047209
- Hellwinkel, O. J., Kedia, M., Isbarn, H., Budaus, L. and Friedrich, M. G. (2008) Methylation of the TPEF- and PAX6-promoters is increased in early bladder cancer and in normal mucosa adjacent to pTa tumours. BJU Int. 101, 753-757. https://doi.org/10.1111/j.1464-410X.2007.07322.x
- Shyr, C. R., Tsai, M. Y., Yeh, S., Kang, H. Y., Chang, Y. C., Wong, P. L., Huang, C. C., Huang, K. E. and Chang, C. (2010) Tumor suppressor PAX6 functions as androgen receptor co-repressor to inhibit prostate cancer growth. Prostate 70, 190-199.
- Vouyovitch, C. M., Vidal, L., Borges, S., Raccurt, M., Arnould, C., Chiesa, J., Lobie, P. E., Lachuer, J. and Mertani, H. C. (2008) Proteomic analysis of autocrine/paracrine effects of human growth hormone in human mammary carcinoma cells. Adv. Exp. Med. Biol. 617, 493-500. https://doi.org/10.1007/978-0-387-69080-3_49
- Muratovska, A., Zhou, C., He, S., Goodyer, P. and Eccles, M. R. (2003) Paired-Box genes are frequently expressed in cancer and often required for cancer cell survival. Oncogene 22, 7989-7997. https://doi.org/10.1038/sj.onc.1206766
- Nizamutdinova, I. T., Lee, G. W., Son, K. H., Jeon, S. J., Kang, S. S., Kim, Y. S., Lee, J. H., Seo, H. G., Chang, K. C. and Kim, H. J. (2008) Tanshinone I effectively induces apoptosis in estrogen receptor-positive (MCF-7) and estrogen receptor-negative (MDA-MB-231) breast cancer cells. Int. J. Oncol. 33, 485-491.
- Anandappa, S. Y., Sibson, R., Platt-Higgins, A., Winstanley, J. H., Rudland, P. S. and Barraclough, R. (2000) Variant estrogen receptor alpha mRNAs in human breast cancer specimens. Int. J. Cancer 88, 209-216. https://doi.org/10.1002/1097-0215(20001015)88:2<209::AID-IJC10>3.0.CO;2-M
- Kashiwagi, Y., Kato, N., Sassa, T., Nishitsuka, K., Yamamoto, T., Takamura, H. and Yamashita, H. (2010) Cotylenin A inhibits cell proliferation and induces apoptosis and PAX6 mRNA transcripts in retinoblastoma cell lines. Mol. Vis. 16, 970-982.
- Niemeier, L. A., Dabbs, D. J., Beriwal. S., Striebel, J. M. and Bhargava, R. (2010) Androgen receptor in breast cancer: expression in estrogen receptor-positive tumors and in estrogen receptor-negative tumors with apocrine differentiation. Mod. Pathol. 23, 205-212. https://doi.org/10.1038/modpathol.2009.159
- Phipps, S. M., Love, W. K., White, T., Andrews, L. G. and Tollefsbol, T. O. (2009) Retinoid-induced histone deacetylation inhibits telomerase activity in estrogen receptornegative breast cancer cells. Anticancer Res. 29, 4959-4964.
- Zhang, D., LaFortune, T. A., Krishnamurthy, S., Esteva, F. J., Cristofanilli, M., Liu, P., Lucci, A., Singh, B., Hung, M. C., Hortobagyi, G. N. and Ueno, N. T (2009). Epidermal growth factor receptor tyrosine kinase inhibitor reverses mesenchymal to epithelial phenotype and inhibits metastasis in inflammatory breast cancer. Clin Cancer Res.15, 6639-6648. https://doi.org/10.1158/1078-0432.CCR-09-0951
Cited by
- Differentially Expressed Transcripts and Dysregulated Signaling Pathways and Networks in African American Breast Cancer vol.8, pp.12, 2013, https://doi.org/10.1371/journal.pone.0082460
- microRNA-223 promotes the growth and invasion of glioblastoma cells by targeting tumor suppressor PAX6 vol.30, pp.5, 2013, https://doi.org/10.3892/or.2013.2683
- PAX6, a Novel Target of microRNA-7, Promotes Cellular Proliferation and Invasion in Human Colorectal Cancer Cells vol.59, pp.3, 2014, https://doi.org/10.1007/s10620-013-2929-x
- microRNA-335 inhibits proliferation, cell-cycle progression, colony formation, and invasion via targeting PAX6 in breast cancer cells vol.11, pp.1, 2015, https://doi.org/10.3892/mmr.2014.2684
- Direct repression of MYB by ZEB1 suppresses proliferation and epithelial gene expression during epithelial-to-mesenchymal transition of breast cancer cells vol.15, pp.6, 2013, https://doi.org/10.1186/bcr3580
- PAX6 overexpression is associated with the poor prognosis of invasive ductal breast cancer 2015, https://doi.org/10.3892/ol.2015.3434
- SOX4, SOX11 and PAX6 mRNA expression was identified as a (prognostic) marker for the aggressiveness of neuroendocrine tumors of the lung by using next-generation expression analysis (NanoString) vol.11, pp.7, 2015, https://doi.org/10.2217/fon.15.18
- MicroRNA-375 targets PAX6 and inhibits the viability, migration and invasion of human breast cancer MCF-7 cells vol.14, pp.2, 2017, https://doi.org/10.3892/etm.2017.4593
- Transcription factor PAX6 as a novel prognostic factor and putative tumour suppressor in non-small cell lung cancer vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-23417-z
- Estradiol and the Development of the Cerebral Cortex: An Unexpected Role? vol.12, pp.1662-453X, 2018, https://doi.org/10.3389/fnins.2018.00245