References
- Fukaya, M., Uchigashima, M., Nomura, S., Hasegawa, Y., Kikuchi, H. and Watanabe, M. (2008) Predominant expression of phospholipase C beta1 in telencephalic principal neurons and cerebellar interneurons, and its close association with related signaling molecules in somatodendritic neuronal elements. Eur. J. Neurosci. 28, 1744-1759. https://doi.org/10.1111/j.1460-9568.2008.06495.x
- Nishizuka, Y. (1988) The molecular heterogeneity of protein kinase C and its implication for cellular regulation. Nature 334, 661-665. https://doi.org/10.1038/334661a0
- Berridge, M. J. (1993) Inositol trisphosphate and calcium signaling. Nature 36, 315-325.
- Berridge, M. J. (1993) Inositol trisphosphate and calcium signaling. Nature 36, 315-325.
- Ross, C. A., MacCumber, M. W., Glatt, C. E. and Snyder, S. H. (1989) Brain phospholipase C isozymes: differential mRNA localizations by in situ hybridization. Proc. Natl. Acad. Sci. 86, 2923-2927. https://doi.org/10.1073/pnas.86.8.2923
- Watanabe, M., Nakamura, M., Sato, K., Kano, M., Simon, M. I. and Inoue, Y. (1998) Patterns of expression for the mRNA corresponding to the four isoforms of phospholipase Cbeta in mouse brain. Eur. J. Neurosci. 10, 2016-2025. https://doi.org/10.1046/j.1460-9568.1998.00213.x
- Kim, D., Jun, K. S., Lee, S. B., Kang, N. G., Min, D. S., Kim, Y. H., Ryu, S. H., Suh, P. G. and Shin, H. S. (1997) Phospholipase C isozymes selectively couple to specific neurotransmitter receptors. Nature 389, 290-293. https://doi.org/10.1038/38508
- Chuang, S. C., Bianchi, R., Kim, D. S., Shin, H. S. and Wong, R. K. S. (2001) Group I metabotropic glutamate receptor elicit epileptiform discharges in the hippocampus through PCLbeta1 signaling. J. Neurosci. 21, 6387-6394.
- Shin, J., Kim, D., Bianchi, R., Wong, R. K. and Shin, H. S. (2005) Genetic dissection of theta rhythm heterogeneity in mice. Proc. Natl. Acad. Sci. 102, 18165-18170. https://doi.org/10.1073/pnas.0505498102
- de Lanerolle, N. C., Kim, J. H., Robbins, R. J. and Spencer, D. D. (1989) Hippocampal interneuron loss and plasticity in human temporal lobe epilepsy. Brain. Res. 495, 387-395. https://doi.org/10.1016/0006-8993(89)90234-5
- Mello, L. E., Cavalheiro, E. A., Tan, A. M., Kupfer, W. R., Pretorius, J. K., Babb, T. L. and Finch, D. M. (1993) Circuit mechanisms of seizures in the pilocarpine model of chronic epilepsy: cell loss and mossy fiber sprouting. Epilepsia 34, 985-995. https://doi.org/10.1111/j.1528-1157.1993.tb02123.x
- Buckmaster, P. and Dudek, F. E. (1997) Neuron loss, granule cell axon reorganization, and functional changes in the dentate gyrus of epileptic kainate-treated rats. J. Comp. Neurol. 385, 385-404. https://doi.org/10.1002/(SICI)1096-9861(19970901)385:3<385::AID-CNE4>3.0.CO;2-#
- El Bahh, B., Lespinet, V., Lurton, D., Coussemacq, M. and Le Gal La Salle, G. (1999) Rougier, Correlations between granule cell dispersion, mossy fiber sprouting, and hippocampal cell loss in temporal lobe epilepsy. Epilepsia 40, 1393-1401. https://doi.org/10.1111/j.1528-1157.1999.tb02011.x
- Matyas, F., Freund, T. F. and Gulyas, A. I. (2004) Immunocytochemically defined interneuron populations in the hippocampus of mouse strains used in transgenic technology. Hippocampus. 14, 460-481. https://doi.org/10.1002/hipo.10191
- Tanaka, O. and Kondo, H. (1994) Localization of mRNAs for three novel members (b3, b4 and c2) of phospholipase C family in mature rat brain. Neurosci. Lett. 182, 17-20. https://doi.org/10.1016/0304-3940(94)90194-5
- Roustan, P., Abitbol, M., Ménini, C., Ribeaudeau, F., Gérard, M., Vekemans, M., Mallet, J. and Dufier, J. L. (1995) The rat phospholipase Cβ4 gene is expressed at high abundance in cerebellar Purkinje cells. Neuroreport 6, 1837-1841. https://doi.org/10.1097/00001756-199510020-00004
- Johnston, D. and Amaral, D. G. (2004) Hippocampus; in Shepherd, G. M., ed, The synaptic organization of the brain. pp. 455-498, Oxford University Press, Oxford, UK.
- Bohm, D., Schwegler, H., Kotthaus, L., Nayernia, K., Rickmann, M., Kohler, M., Rosenbusch, J., Engel, W., Flugge, G. and Burfeind, P. (2002) Disruption of PLCβ-1-mediated signal transduction in mutant mice causes age-dependent hippocampal mossy fiber sprouting and neurodegeneration. Mol. Cell. Neurosci. 21, 584-601. https://doi.org/10.1006/mcne.2002.1199
- Fisher, R. S. (1989) Animal models of the epilepsies. Brain Res. Brain. Res. Rev. 14, 245-278. https://doi.org/10.1016/0165-0173(89)90003-9
- Noebels, J. L. (1999) Single-gene models of epilepsy. Adv. Neurol. 79, 227-238.
- Puranam, R. S. and McNamara, J. O. (1999) Seizure disorders in mutant mice: relevance to human epilepsies. Curr. Opin. Neurobiol. 9, 281-287. https://doi.org/10.1016/S0959-4388(99)80041-5
- Lu, W. Y., Jackson, M. F., Bai, D., Orser, B. A. and Mac- Donald, J. F. (2000) In CA1 pyramidal neurons of the hippocampus protein kinase C regulates calcium-dependent inactivation of NMDA receptors. J. Neurosci. 20, 4452-4461.
- Buzsaki, G., Ponomareff, G. L., Bayardo, F., Ruiz, R. and Gage, F. H. (1989) Neuronal activity in the subcortically denervated hippocampus: a chronic model for epilepsy. Neuroscience 28, 527-538. https://doi.org/10.1016/0306-4522(89)90002-X
- Pitler, T. A. and Alger, B. E. (1992) Cholinergic excitation of GABAergic interneurons in the rat hippocampal slice. J. Physiol. 450, 127-142. https://doi.org/10.1113/jphysiol.1992.sp019119
- Klausberger, T., Magill, P. J., Márton, L. F., Roberts, J. D., Cobden, P. M., Buzsáki, G. and Somogyi, P. (2003) Brainstate- and cell-type-specific firing of hippocampal interneurons in vivo. Nature 421, 844-848. https://doi.org/10.1038/nature01374
- Klausberger, T., Marton, L. F., Baude, A., Roberts, J. D., Magill, P. J. and Somogyi, P. (2004) Spike timing of dendrite- targeting bistratified cells during hippocampal network oscillations in vivo. Nat. Neurosci. 7, 41-47. https://doi.org/10.1038/nn1159
- Kwak, S. E., Kim, J. E., Kim, D. S., Jung, J. Y., Won, M. H., Kwon, O. S., Choi, S. Y., Kang, T. C. (2005) Effects of GABAergic transmissions on the immunoreactivities of calcium binding proteins in the gerbil hippocampus. J. Comp. Neurol. 485, 153-164 https://doi.org/10.1002/cne.20482
- Buckmaster, P. A. (2005) Inherited epilepsy in Mongolian gerbils: models of seizures and epilepsy; in Schwartzkroin P. A., ed. pp. 273-294, Academic press, Elsevier, USA.
- Baskys, A., Bayazitov, I., Fang, L., Blaabjerg, M., Poulsen, R. R. and Zimmer, J. (2005) Group I metabotropic glutamate receptors reduce excitotoxic injury and may facilitate neurogenesis. Neuropharmacology 49, 146-156. https://doi.org/10.1016/j.neuropharm.2005.04.029
- Kang, T. C., Kim, D. S., Kwak, S. E., Kim, J. E., Kim, D. W., Kang, J. H., Won, M. H., Kwon, O. S. and Choi, S. Y. (2005) Valproic acid reduces enhanced vesicular glutamate transporter immunoreactivities in the dentate gyrus of the seizure prone gerbil. Neuropharmacology 49, 912-921. https://doi.org/10.1016/j.neuropharm.2005.08.007
- Kim, D. S., Kim, J. E., Kwak, S. E., Won, M. H. and Kang, T. C. (2007a) Seizure activity affects neuroglial Kv1 channel immunoreactivities in the gerbil hippocampus. Brain. Res. 1151, 172-187. https://doi.org/10.1016/j.brainres.2007.03.017
-
Kim, D. S., Kim, J. E., Kwak, S. E., Choi, H. C., Song, H. K., Kim, Y. I., Choi, S. Y. and Kang, T. C. (2007b) Upregulated astroglial TWIK-related acid-sensitive
$K^+$ channel-1 (TASK-1) in the hippocampus of seizure-sensitive gerbils : a target of anti-epileptic drugs. Brain. Res. 1185, 346-358. https://doi.org/10.1016/j.brainres.2007.09.043 - Paul, L. A., Fried, I., Watanabe, K., Forsythe, A. B. and Schibel, A. B. (1981) Structural correlates of seizure behavior in the Mongolian gerbil. Science 213, 924-926. https://doi.org/10.1126/science.7256289
-
Kim, J. E., Kwak, S. E. and Kang, T. C. (2009) Upregulated TWIK-related acid-sensitive
$K^+$ channel-2 in neurons and perivascular astrocytes in the hippocampus of experimental temporal lobe epilepsy. Epilepsia 50, 654-663. https://doi.org/10.1111/j.1528-1167.2008.01957.x -
Lee, S. M., Kim, J. E., Sohn, J. H., Choi, H. C., Lee, J. S., Kim, S. H., Kim, M. J., Choi, I. G. and Kang, T. C. (2009) Down-regulation of delayed rectifier
$K^+$ channels in the hippocampus of seizure sensitive gerbils. Brain. Res. Bull. 80, 433-442. https://doi.org/10.1016/j.brainresbull.2009.07.016 - Kim, D. S., Kim, J. E., Kwak, S. E., Choi, K. C., Kim, D. W., Kwon, O. S., Choi, S. Y. and Kang, T. C. (2008) Spatiotemoral characteristics of astroglial death in the rat hippocampo-entorhinal complex following pilocarpine-induced status epilepticus. J. Comp. Neurol. 511, 581-598. https://doi.org/10.1002/cne.21851
Cited by
- Alterations in hyperpolarization-activated cyclic nucleotide-gated cation channel (HCN) expression in the hippocampus following pilocarpine-induced status epilepticus vol.45, pp.11, 2012, https://doi.org/10.5483/BMBRep.2012.45.11.091
- Reduced expression of Phospholipase C beta in hippocampal interneuron during pilocarpine induced status epilepticus in mice vol.68, 2014, https://doi.org/10.1016/j.neuint.2014.01.009
- Altered expression of adrenocorticotropic hormone in the epileptic gerbil hippocampus following spontaneous seizure vol.46, pp.2, 2013, https://doi.org/10.5483/BMBRep.2013.46.2.149