DOI QR코드

DOI QR Code

The C-terminal domain of PLD2 participates in degradation of protein kinase CKII β subunit in human colorectal carcinoma cells

  • Lee, Young-Hoon (School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University) ;
  • Uhm, Jong-Su (School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University) ;
  • Yoon, Soo-Hyun (School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University) ;
  • Kang, Ji-Young (School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University) ;
  • Kim, Eun-Kyung (School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University) ;
  • Kang, Beom-Sik (School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University) ;
  • Min, Do-Sik (Department of Molecular Biology, College of Natural Sciences, Pusan National University) ;
  • Bae, Young-Seuk (School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University)
  • Received : 2011.05.13
  • Accepted : 2011.06.24
  • Published : 2011.09.30

Abstract

Elevated phospholipase D (PLD) expression prevents cell cycle arrest and apoptosis. However, the roles of PLD isoforms in cell proliferation and apoptosis are incompletely understood. Here, we investigated the physiological significance of the interaction between PLD2 and protein kinase CKII (CKII) in HCT116 human colorectal carcinoma cells. PLD2 interacted with the CKII${\beta}$ subunit in HCT116 cells. The C-terminal domain (residues 578-933) of PLD2 and the N-terminal domain of CKII${\beta}$ were necessary for interaction between the two proteins. PLD2 relocalized CKII${\beta}$ to the plasma membrane area. Overexpression of PLD2 reduced CKII${\beta}$ protein level, whereas knockdown of PLD2 led to an increase in CKII${\beta}$ expression. PLD2-induced CKII${\beta}$ reduction was mediated by ubiquitin-dependent degradation. The C-terminal domain of PLD2 was sufficient for CKII${\beta}$ degradation as the catalytic activity of PLD2 was not required. Taken together, the results indicate that the C-terminal domain of PLD2 can regulate CKII by accelerating CKII${\beta}$ degradation in HCT116 cells.

Keywords

References

  1. Exton, J. H. (1999) Regulation of phospholipase D. Biochim. Biophys. Acta 1439, 121-133. https://doi.org/10.1016/S1388-1981(99)00089-X
  2. Liscovitch, M., Czarny, M., Fiucci, G., and Tang, X. (2000) Phospholipase D: molecular and cell biology of a novel gene family. Biochem. J. 345, 401-415. https://doi.org/10.1042/0264-6021:3450401
  3. Rudge, S. A. and Wakelam, M. J. (2009) Inter-regulatory dynamics of phospholipase D and the actin cytoskeleton. Biochim. Biophys. Acta. 1791, 856-861. https://doi.org/10.1016/j.bbalip.2009.04.008
  4. Gomez-Cambronero, J. (2010) New concepts in phospholipase D signaling in inflammation and cancer. Scientific World J. 10, 1356-1369. https://doi.org/10.1100/tsw.2010.116
  5. Su, W., Chen, Q., and Frohman, M. A. (2009) Targeting phospholipase D with small-molecule inhibitors as a potential therapeutic approach for cancer metastasis. Future Oncol. 5, 1477-1486. https://doi.org/10.2217/fon.09.110
  6. Pinna, L. A. (1990) Casein kinase 2: an 'eminence grise' in cellular regulation? Biochim. Biophys. Acta. 1054, 267-284. https://doi.org/10.1016/0167-4889(90)90098-X
  7. Issinger, O. G. (1993) Casein kinases: pleiotropic mediators of cellular regulation. Pharmacol. Ther. 59, 1-30. https://doi.org/10.1016/0163-7258(93)90039-G
  8. Litchfield, D. W. (2003) Protein kinase CK2: structure, regulation and role in cellular decisions of life and death. Biochem. J. 369, 1-15. https://doi.org/10.1042/BJ20021469
  9. Krippner-Heidenreich, A., Talanian, R. V., Sekul, R., Kraft, R., Thole, H., Ottleben, H., and Luscher, B. (2001) Targeting of the transcription factor Max during apoptosis: phosphorylation-regulated cleavage by caspase-5 at an unusual glutamic acid residue in position P1. Biochem. J. 358, 705-715. https://doi.org/10.1042/0264-6021:3580705
  10. Desagher, S., Osen-Sand, A., Montessuit, S., Magnenat, E., Vilbois, F., Hochmann, A., Journot, L., Antonsson, B., and Martinou, J. C. (2001) Phosphorylation of bid by casein kinases I and II regulates its cleavage by caspase 8. Mol. Cell 8, 601-611. https://doi.org/10.1016/S1097-2765(01)00335-5
  11. Shin, S., Lee, Y., Kim, W., Ko, H., Choi, H., and Kim, K. (2005) Caspase-2 primes cancer cells for TRAIL-mediated apoptosis by processing procaspase-8. EMBO J. 24, 3532-3542. https://doi.org/10.1038/sj.emboj.7600827
  12. Yoon, S. H, Min, D. S., and Bae, Y. S. (2009) Over-expression of phospholipase D isozymes down-regulates protein kinase CKII activity via proteasome-dependent CKII$\beta$ degradation in NIH3T3 cells. Mol. Cells 27, 299-305. https://doi.org/10.1007/s10059-009-0038-7
  13. Vorland, M., Thorsen, V. A., and Holmsen, H. (2008) Phospholipase D in platelets and other cells. Platelets 19, 582-594. https://doi.org/10.1080/09537100802454992
  14. Zhang, C., Vilk, G., Canton, D. A., and Litchfield, D. W. (2002) Phosphorylation regulates the stability of the regulatory CK2$\beta$ subunit. Oncogene 21, 3754-3764. https://doi.org/10.1038/sj.onc.1205467
  15. Min, D. S., Ahn, B. H., Rhie, D. J., Yoon, S. H., Hahn, S. J., Kim, M. S., and Jo, Y. H. (2001) Expression and regulation of phospholipase D during neuronal differentiation of PC12 cells. Neuropharmacol. 41, 384-391. https://doi.org/10.1016/S0028-3908(01)00070-3
  16. Kim, T. H., Lee, J. Y., Kang, B. S., and Bae, Y. S. (2005) In vitro characterization of protein kinase CKII β mutants defective in beta-beta dimerization. Mol. Cells 19, 124-130.
  17. Fields, S. and Song, O. (1989) A novel genetic system to detect protein-protein interactions. Nature 340, 245-246. https://doi.org/10.1038/340245a0

Cited by

  1. Regulation of protein kinase CK2 catalytic activity by protein kinase C and phospholipase D2 vol.121, 2016, https://doi.org/10.1016/j.biochi.2015.12.005