DOI QR코드

DOI QR Code

The Mechanical Properties of Heat-Compressed Radiata Pine (Pinus radiata D.Don) - Effect of Press Temperature & Time -

열압밀화 라디에타 소나무재의 역학적 특성

  • Hwang, Sung-Wook (Dept. of Wood Science & Technology, College of Agriculture & Life Sciences, Kyungpook National University) ;
  • Lee, Won-Hee (Dept. of Wood Science & Technology, College of Agriculture & Life Sciences, Kyungpook National University)
  • 황성욱 (경북대학교 농업생명과학대학 임산공학과) ;
  • 이원희 (경북대학교 농업생명과학대학 임산공학과)
  • Received : 2011.04.07
  • Accepted : 2011.06.07
  • Published : 2011.07.25

Abstract

The mechanical properties of heat-compressed Radiata pine (Pinus radiata D.Don) by compression temperature and time were investigated. The compressive strength and bending strength of heat-compressed wood increased with increasing compression temperature and time. But the compressive strength and bending strength decreased with press temperature $220^{\circ}C$. It was considered due to thermal degradation during high temperature conditions. The surface hardness of heat-compressed wood increased with increasing compression temperature. However, the effect of compression time was negligible. The nail holding power was not affected by compression temperature and time.

본 연구에서는 압체온도와 시간에 따른 열압밀화 라디에타 소나무재의 역학적 특성을 조사하였다. 종압축강도와 휨강도는 압체온도와 시간의 증가와 함께 증가하였다. 그러나 압체온도 $220^{\circ}C$에서는 열화로 인해 오히려 감소된 값을 나타내었다. 표면경도는 압체온도의 증가와 함께 증가하였으며, 압체시간이 표면경도에 미치는 영향은 미약하였다. 못뽑기저항의 경우 접선단면의 저항력이 가장 높았으며, 압체온도와 시간에 의한 영향은 거의 나타나지 않았다.

Keywords

References

  1. 강춘원, 김남훈, 김병로, 김영숙, 변희섭, 소원택, 여환명, 오승원, 이원희, 이화형. 2008. 신고 목재물리 및 역학. 향문사 pp. 279-289.
  2. 김광모, 박정환, 박병수, 손동원, 박주생, 김운섭, 김병남, 심상로. 2009. 삼나무 열처리재의 물리 및 역학적 특성. 목재공학 37(4): 330-339.
  3. 김광모, 박정환, 박병수, 손동원, 박주생, 김운섭, 김병남, 심상로. 2010. 백합나무 열처리재의 물리 및 역학적 특성. 목재공학 38(1): 17-26. https://doi.org/10.5658/WOOD.2010.38.1.17
  4. 김정환, 이원희, 한규성, 변희섭. 2000. 수증기처리 열압밀화 목재의 강도적 성질. 한국가구학회지 11(2): 1-6.
  5. 이원희, 한규성. 2000. 수증기 처리에 의한 열압밀화 목재의 압축고정. 한국가구학회지 11(1): 85-89.
  6. Yutaka, A., K. Hisayoshi, and N. Hisashi, Yamaguchi, Yoshiyuki. 2002. International Journal of Heat and Mass Transfer 45: 2243-2253. https://doi.org/10.1016/S0017-9310(01)00330-1
  7. Cadan, Z., S. Hiziroglu, and A. G. McDonald. 2010. Surface quality of thermally compressed Douglas fir veneer. Materials and Design 31: 3574-3577. https://doi.org/10.1016/j.matdes.2010.02.003
  8. Kubojima, Y., T. Oktani, and H. Yoshihara. 2003. Effect of shear deflection on vibrational properties of compressed wood. Wood Sci. Technol. 38: 237-244.
  9. Kubojima, Y., T. Oktani, and H. Yoshihara. 2004. Effect of shear deflection on bending properties of compressed wood. Wood and Fiber Science 36: 210-215.
  10. Norimoto, M. 1993. Large compressive deformation in wood. Mokuzai Gakkaishi 39(8): 867-874.
  11. Sulzberger, P. H. 1953. The effect of temperature on the strength of wood, plywood and glued joints. Aeron. Res. Cons. Comm., Australia, Rep. ACA-46. p. 44.
  12. Tabarsa, T. 1995. The effects of transverse compression and press temperature on wood response during hot-pressing. M.Sc., thesis, The University of New Brunswick, Canada.
  13. Unsal, O. and Z. Cadan. 2008. Moisture Content, Vertical Density Profile and Janka Hardness of Thermally compressed Pine Wood Panels as a Function of Press Pressure and Temperature. Drying Technology 26: 1165-1169. https://doi.org/10.1080/07373930802266306
  14. Unsal, O., S. N. Kartal, Z. Cadan, R. A. Arango, C. A. Clausen, and F. Green. III. 2009. Decay and termite resistance, water absorption and swelling of thermally compressed wood panels. International Biodeterioration & Biodegradation 63: 548-552. https://doi.org/10.1016/j.ibiod.2009.02.001
  15. Wang, J. M., G. J. Zhao, and I. Lida. 2000. Effect of oxidation on heat fixation of compressed wood of China fir. Forestry Studies in China 2(1): 73-79.
  16. Yuhe, C. and H. J. Muehl. 1999. Factors of affecting the spring back of compressed Paulownia wood. Journal of Forestry Research 10(3): 168-172. https://doi.org/10.1007/BF02855425

Cited by

  1. Change of Dimensional Stability of Thermally Compressed Korean Pine (Pinus koraiensis Sieb. et Zucc.) Wood by Heat Treatment vol.43, pp.4, 2015, https://doi.org/10.5658/WOOD.2015.43.4.470
  2. A Study on Dimensional Stability and Thermal Performance of Superheated Steam Treated and Thermal Compressed Wood vol.44, pp.2, 2016, https://doi.org/10.5658/WOOD.2016.44.2.184