DOI QR코드

DOI QR Code

Interface State Control of Amorphous InGaZnO Thin Film Transistor by Surface Treatment of Gate Insulator

게이트 절연막의 표면처리에 의한 비정질 인듐갈륨징크옥사이드 박막트랜지스터의 계면 상태 조절

  • Kim, Bo-Sul (Electronic Materials Center, Material Science and Technology Research Division, Korea Institute of Science and Technology) ;
  • Kim, Do-Hyung (Electronic Materials Center, Material Science and Technology Research Division, Korea Institute of Science and Technology) ;
  • Lee, Sang-Yeol (Electronic Materials Center, Material Science and Technology Research Division, Korea Institute of Science and Technology)
  • 김보슬 (한국과학기술연구원 전자재료연구센터) ;
  • 김도형 (한국과학기술연구원 전자재료연구센터) ;
  • 이상렬 (한국과학기술연구원 전자재료연구센터)
  • Received : 2011.03.14
  • Accepted : 2011.08.01
  • Published : 2011.09.01

Abstract

Recently, amorphous oxide semiconductors (AOSs) based thin-film transistors (TFTs) have received considerable attention for application in the next generation displays industry. The research trends of AOSs based TFTs investigation have focused on the high device performance. The electrical properties of the TFTs are influenced by trap density. In particular, the threshold voltage ($V_{th}$) and subthreshold swing (SS) essentially depend on the semiconductor/gate-insulator interface trap. In this article, we investigated the effects of Ar plasma-treated $SiO_2$ insulator on the interfacial property and the device performances of amorphous indium gallium zinc oxide (a-IGZO) TFTs. We report on the improvement in interfacial characteristics between a-IGZO channel layer and gate insulator depending on Ar power in plasma process, since the change of treatment power could result in different plasma damage on the interface.

Keywords

References

  1. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature, 432, 488 (2004). https://doi.org/10.1038/nature03090
  2. K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, Science, 23, 1269 (2003).
  3. J. S. Park, K. S. Kim, Y. G. Park, Y. G. Mo, H. D. Kim, and J. K. Jeong, Adv. Mater., 21, 329.
  4. E. G. Chong, S. H. Kim, and S. Y. Lee, Appl. Phys. Lett., 97, 252112 (2010). https://doi.org/10.1063/1.3530453
  5. E. G. Chong, Y. S. Chun, and S. Y. Lee, Appl. Phys. Lett., 97, 102102 (2010). https://doi.org/10.1063/1.3479925
  6. E. G. Chong, Y. S. Chun, and S. Y. Lee, Electrochem. Solid State Lett., 14, 96 (2011).
  7. M. Furuta, T. Nakanishi, M. Kimura, T. Hiramatsu, T. Matsuda, H. Furuta, T. Kawaharamura, C. Li, and T. Hirao, Electrochem. Solid State Lett., 13, 101 (2010).
  8. Y. K. Moon, S. Lee, D. H. Kim, D. H. Lee, C. O. Jeong, and J. W. Park, Jpn. J. Appl. Phys., 48, 031301 (2009). https://doi.org/10.1143/JJAP.48.031301
  9. K. Nomura, A. Takagi, T. Kamiya, H. OHTA, M. Hirano, and H. Hosono, J. Appl. Phys., 45, 5 (2006).
  10. S. Y. Lee, Y. W. Song, and S. P. Chang, J. IEEK, 35, 60 (2008).
  11. Y. Orikasa, M. Hayashi, and S. Muranaka, J. Appl. Phys., 103, 113703 (2008). https://doi.org/10.1063/1.2937939
  12. M. K. Ryu, S. Yang, S. H. K. Park, C. S. Hwang, and J. K. Jeong, Appl. Phys. Lett., 95, 072104 (2009). https://doi.org/10.1063/1.3206948
  13. E. G. Chong, K. C. Jo, S. H. Kim, and S. Y. Lee, J. KIEEME., 23, 5 (2010).