DOI QR코드

DOI QR Code

Comparative Evaluation among Different Kriging Techniques applied to GOSAT CO2 Map for North East Asia

GOSAT 기반의 동북아시아 CO2 분포도에 적용된 크리깅 기법의 비교평가

  • Choi, Jin Ho (Department of Spatial Information Science, Kyungpook National University) ;
  • Um, Jung-Sup (Department of Geography, Kyungpook National University)
  • Received : 2011.08.24
  • Accepted : 2011.11.28
  • Published : 2011.12.31

Abstract

The GOSAT (Greenhouse gases Observing SATellite) data provide new opportunities the most regionally complete and up-to-date assessment of $CO_2$. However, in practice, GOSAT records often suffer from missing data values mainly due to unfavorable meteorological condition in specific time periods of data acquisition. The aim of this research was to identify optimal spatial interpolation techniques to ensure the continuity of $CO_2$ from samples taken in the North East Asia. The accuracy among ordinary kriging (OK), universal kriging (UK) and simple kriging (SK) was compared based on the combined consideration of $R^2$ values, Root Mean Square Error (RMSE), Mean Error (ME) for variogram models. Cross validation for 1312 random sampling points indicate that the (UK) kriging is the best geostatistical method for spatial predictions of $CO_2$ in the East Asia region. The results from this study can be useful for selecting optimal kriging algorithm to produce $CO_2$ map of various landscapes. Also, data users may benefit from a statistical approach that would allow them to better understand the uncertainty and limitations of the GOSAT sample data.

Keywords

References

  1. 김경렬, 2010, 고산을 중심으로 하는 동북아시아 온실기체 감시 및 진단연구, 서울대학교.
  2. 김준현.최진호.김충실, 2010, GIS를 활용한 이산화탄소 농도 보간 정확도 비교평가, 한국환경영향평가학회지, 19(6), 647-656.
  3. 김호용, 2010, 공간통계기법을 이용한 도시 교통량 예측의 정확성 향상, 한국지리정보학회지, 13(4), 138-147.
  4. 류희영.이기원.권병두, 2008, 도시원격탐사에서 베리오그램을 이용한 최적의 분석범위 구역화, 대한원격탐사학회지, 24(2), 107-115. https://doi.org/10.7780/kjrs.2008.24.2.107
  5. 박노욱.장동호, 2009, 지표환경 주제도 작성을 위한 크리깅 기법과 원격 탐사 자료의 통합 및 불확실 분석 : 입도분포지도 사례 연구, 대한지리학회지, 44(2), 395-409.
  6. 심창섭, 2010, 대기 중 이산화탄소 분포에 대한 이해 : 위성관측과 GEOS-Chem 결과를 중심으로, 한국환경정책.평가연구원.
  7. 우광성.박진환.이희정, 2008, 베리오그램 모델 변화에 따른 정규 크리깅 보간법의 민감도 분석, 한국전산구조공학회논문집, 21(3), 295-304.
  8. 조홍래.정종철, 2006, 강우자료에 대한 공간보간 기법의 적용, 한국GIS학회지, 14(6), 29-41.
  9. 최선영, 2004, GIS의 통계적 공간분석을 이용한 해수침투 분포 양상 파악, 전남대학교 석사학위청구논문.
  10. 최종근, 2007, 지구통계학, 시그마플레스.
  11. Coulibaly L., Migolet P., Adegbidi H.G., Fournier R., and Hervet E., 2008, Mapping aboveground forest biomass from IKONOS satellite image and multisource geospatial data using neural networks and a kriging interpolation, Geoscience and Remote Sensing Symposium, IGARSS 2008, 298-301.
  12. Florio E. N., Lele S. R., Chang Y.C., Sterner R. and Glass G. E., 2004, Integrating AVHRR satellite data and NOAA ground observations to predict surface air temperature: a statistical approach, International Journal of Remote Sensing, 25(15), 2979-2994. https://doi.org/10.1080/01431160310001624593
  13. Isaaks E. H. and Srivastava R. M, 1989, Applied Geosatistics, Oxford University Press, New York.
  14. Kuze A., Urabe T., Suto H., Kaneko Y. and Hamazaki T., 2006, The Instrumentation and the BBM test results of thermal and near-infrared sensor for carbon observation(TANSO) on GOSAT, Infrared Spaceborne Remote Sensing XIV, 6297.
  15. Kuze A., Suto H., Nakajima M. and Hamazaki T., 2009, Thermal and near infrared sensor for carbon observation fouriertransform spectrometer on the greenhouse gases observing satellite for greenhouse gases monitoring, Applied optics, 63(10), 6716-6733.
  16. Lal M. and Harasawa H., 2001, Future climate change scenarios for ASIA as inferred from selected coupled atmosphereocean global climate models, Journal of the Meteorological Society of Japan, (79), 219-227.
  17. Manthena D., Pual S. M. and Kumar A., 2009, Interpolation of radon concentrations using GIS-based kriging and cokriging techniques, Environmental Progress and Sustainable Energy, 28(4), 487-492. https://doi.org/10.1002/ep.10407
  18. Tomosada M., Kanefuji K., Matsumoto Y. and Tsubaki H., 2008, Application of the spatial statistics to the retrieved CO2 column abundances derived from GOSAT data, 4th WSEAS International Conference on REMOTE SENSING, 67-73.
  19. Tomosada M., Kanefuji K., Matsumoto Y. and Tsubaki H., 2009, A prediction method of the global distribution map of $CO_2$ column abundance retrieved from GOSAT observation derived from ordinary kriging, ICROS-SICE International Joint Conference, 4869-4873.
  20. Tranchant B. J. S. and Vincent A. P., 2000, Statistical interpolation of ozone measurements from satellite Data(TOMS, SBUV and SAGE II) using the Kriging Method, Annales Geophysicae, 18, 666-678. https://doi.org/10.1007/s00585-000-0666-x
  21. Wang X., 2007, Spatial and temporal patterns of land values based on the krigng and GIS method, CHONGQING JIANHU University Journal, 29(1), 101-105.

Cited by

  1. GOSAT으로 추적된 동북아시아 이산화탄소 유동방향의 계절별 비교평가 vol.20, pp.5, 2012, https://doi.org/10.12672/ksis.2012.20.5.001