DOI QR코드

DOI QR Code

Analysis of Climate Characteristics Observed over the Korean Peninsula for the Estimation of Climate Change Vulnerability Index

기후변화 취약성 지수 산출을 위한 한반도 관측 기후 특성 분석

  • Nam, Ki-Pyo (Division of Earth Environmental System, Pusan National University) ;
  • Kang, Jeong-Eon (Division of Earth Environmental System, Pusan National University) ;
  • Kim, Cheol-Hee (Division of Earth Environmental System, Pusan National University)
  • 남기표 (부산대학교 지구환경시스템학부 대기과학전공) ;
  • 강정언 (부산대학교 지구환경시스템학부 대기과학전공) ;
  • 김철희 (부산대학교 지구환경시스템학부 대기과학전공)
  • Received : 2011.10.02
  • Accepted : 2011.12.02
  • Published : 2011.12.31

Abstract

Climate vulnerability index is usually defined as a function of the climate exposure, sensitivity, and adaptive capacity, which requires adequate selection of proxy variables of each variable. We selected and used 9 proxy variables related to climate exposure in the literature, and diagnosed the adequacy of them for application in Korean peninsula. The selected proxy variables are: four variables from temperature, three from precipitation, one from wind speed, and one from relative humidity. We collected climate data over both previous year (1981~2010) and future climate scenario (A1B scenario of IPCC SERES) for 2020, 2050, and 2100. We introduced the spatial and temporal diagnostic statistical parameters, and evaluated both spatial and time variabilities in the relative scale. Of 9 proxy variables, effective humidity indicated the most sensitive to climate change temporally with the biggest spatial variability, implying a good proxy variable in diagnostics of climate change vulnerability in Korea. The second most sensitive variable is the frequency of strong wind speed with a decreasing trend, suggesting that it should be used carefully or may not be of broad utility as a proxy variable in Korea. The A1B scenario of future climate in 2020, 2050 and 2100 matches well with the extension of linear trend of observed variables during 1981~2010, indicating that, except for strong wind speed, the selected proxy variables can be effectively used in calculating the vulnerability index for both past and future climate over Korea. Other local variabilities for the past and future climate in association with climate exposure variables are also discussed here.

Keywords

References

  1. 경기개발연구원, 2009, 경기도 기후변화 취약성 평가 연구, 3-43, 75-100.
  2. 고재경, 2011, 지방자치단체 기후변화 취약성 유형 및 적응방안 연구, 한국사회와 행정연구, 22(2), 93-118.
  3. 국립환경과학원, 2008, 기후 및 대기환경 통합시스템 구축 및 운영, 63-69.
  4. 국립환경과학원, 2009, 기후 및 대기환경 통합시스템 구축 및 운영(II), 3-27.
  5. 국립환경과학원, 2010, 기후 및 대기환경 통합 모델링 구축 및 운영(III), 3-10.
  6. 기상연구소, 2004, 기후변화협약대응 지역기후 시나리오 산출기술개발(III), 60-69.
  7. 김연희, 김맹기, 전은지, 이중대, 민경우, 장용석, 2010, 한반도 강수의 양극화 현상, 기후연구 5(1), 1-15.
  8. 김은화, 2010, 정규지상관측자료를 이용한 기후변화 취약성 지수 산정, 부산대학교 석사학위 청구논문, 26-30.
  9. 김철희, 김은화, 송창근, 홍유덕, 유정아, 홍성철, 2011, 한반도 기후 변화 적응을 위한 취약성지수 산정에 관한 고찰, 한국환경과학회지, 20(6), 789-798.
  10. 류상범, 김연희, 권태현, 박일수, 2006, 기상청 기후자료의 균질성 문제(I): 관측지점의 이전, 대기, 16(3), 215-223.
  11. 배덕효, 이문환, 2010, 기후변화에 따른 홍수취약성평가와 사례분석, 국토, 344, 20-31.
  12. 유정아, 송창근, 이현주, 홍유덕, 2011, 전국 지자체 단위 기후변화 부문별 취약성평가 표준화 방법론 개발, 한국대기환경학회 2011년 추계학술대회 논문집, 154.
  13. 이재범, 문경정, 홍성철, 김덕래, 송창근, 최원준, 유정아, 홍유덕, 2010, 기후변화에 따른 대기질 취약성 평가, 한국대기환경학회 2010년 춘계학술대회 논문집, 363-365.
  14. 진영훈, 박성천, 2005, 남방진동지수의 범주구분에 의한 강수량에 미치는 ENSO 영향의 통계학적 분석, 대한토목학회지, 25(6B), 443-450.
  15. 최현아, 이우균, 곽한빈, 최성호, 변재균, 유성진, 2009, 시.공간정보기반기후변화취약성평가, 한국공간정보시스템학회논문지, 11(3), 63-69.
  16. 한국환경정책.평가연구원, 2008, 기후변화 취약성 평가지표의 개발 및 도입방안, 4-43, 51-52.
  17. Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B., Fiore, A. M., Li, Q., Liu, H., Mickley, L. J. and Schultz, M., 2001, Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation, J. Geophys. Res., 106, 23, 073-095.
  18. Byun, D. W. and Ching, J. K. S., 1999, Science Algorithms of the EPA Models-3 Community Multi-scale Air Quality (CMAQ) Modeling System, EPA Report, EPA/600/R-99/030, NERL, Research Triangle Park, NC.
  19. Collins, W. D., Rasch, P. J., Boville, B. A., Hack, J. J., McCaa, J. R., Williamson, D. L., Briegleb, B. P., Bitz, C. M., Lin, S. J. and Zhang, M., 2006, The formulation and atmospheric simulation of the Community Atmosphere Model version 3(CAM3), Journal of Climate, 19, 2144-2161. https://doi.org/10.1175/JCLI3760.1
  20. Colman, R. A., 2004, On the structure of water vapour feedbacks in climate models, Geophys. Res. Lett., 31, L21109, doi:10. 1029/2004GL020708.
  21. Cutter, S. L., Boruff, B. J. and Shirley, W. L., 2003, Social Vulnerability to Environmental Hazards, Social Science Quarterly, 84(2), 242-261. https://doi.org/10.1111/1540-6237.8402002
  22. Dai, A., 2006, Precipitation characteristics in eighteen coupled climate models, Journal of Climate., 19, 4605-4630. https://doi.org/10.1175/JCLI3884.1
  23. Grell, G. A., Dudhia, J. and Stauffer, D. R., 1995, A description of the Fifth- Generation Penn State/NCAR Mesoscale Model (MM5), NCAR Tech. Note NCAR/TN-398+STR, 138.
  24. IPCC, 2001, Climate Change 2001: Impacts, adaptation, and vulnerability, Third Assessment Report, Cambridge University Press, Cambridge, UK.
  25. IPCC, 2007, Climate Change 2007: Impacts, adaptation, and vulnerability, Foruth Assessment Report, Cambridge University Press, Cambridge, UK.
  26. Moss, R. H., Brenkert, A. L. and Malone, E. L., 2001, Vulnerability to climate change: A quantitative approach, PNNL-SA-33642, Prepared for the U.S. Department of Energy.
  27. Soden, B. J. and Held, I. M., 2006, An assessment of climate feedbacks in coupled ocean-atmosphere models, Journal of Climate., 19, 3354-3360. https://doi.org/10.1175/JCLI3799.1
  28. Trenberth, K. E., Fasullo, J. and Smith, L., 2005, Trends and variability in columnintegrated atmospheric water vapour, Climate Dynamics., 24, 741-758. https://doi.org/10.1007/s00382-005-0017-4
  29. UNDP, 2005, Adaptation policy frameworks for climate change: Developing strategies, policies, and measures, Cambridge University Press, UK.
  30. USEPA, 1999, Science Algorithms of the EPA Models-3 Community Multi-scale Air Quality(CMAQ) Modeling System, USEPA No.EPA/600/R-99/030, Office of Research and Development, Washington, DC 20460.
  31. Wehbe, M. B., Seiler, R. A., Vinocur, M. R., Eakin, H., Santos, C. and Civitaresi, H. M., 2005, Social methods for assessing agricultural producer's vulnerability to climate variability and change based on the notion of sustainability, Assessments of Impacts and Adaptations of Climate Change Working Papers.
  32. Wentz, F. J. and Schabel, M., 2000, Precise climate monitoring using complementary satellite data sets, Nature, 403, 414-416. https://doi.org/10.1038/35000184