DOI QR코드

DOI QR Code

Antioxidant activity and cell protective effect of loliolide isolated from Sargassum ringgoldianum subsp. coreanum

  • Yang, Xiudong (Department of Marine Life Science, Jeju National University) ;
  • Kang, Min-Cheol (Department of Marine Life Science, Jeju National University) ;
  • Lee, Ki-Wan (Department of Marine Life Science, Jeju National University) ;
  • Kang, Sung-Myung (Department of Marine Life Science, Jeju National University) ;
  • Lee, Won-Woo (Department of Marine Life Science, Jeju National University) ;
  • Jeon, You-Jin (Department of Marine Life Science, Jeju National University)
  • Received : 2011.03.08
  • Accepted : 2011.05.25
  • Published : 2011.06.15

Abstract

A monoterpene lactone, loliolide was successively isolated from brown seaweed, Sargassum ringgoldianum subsp. coreanum using column chromatography and high-performance liquid chromatography. The structure of the isolated compound was determined by comparison of EIMS and NMR spectral data with the previously published data. The antioxidant activities of loliolide were also evaluated by DPPH and $H_2O_2$ radical and intracellular reactive oxygen species scavenging assays, and it showed moderate activities in all antioxidant assays. Furthermore, loliolide was found to exert positive dose-dependent effects in the protective effects against $H_2O_2$-induced cell damage which were determined via MTT, Hoechst staining assays and cell cycle analysis. This is the first study on chemical constituent of this seaweed according to our best knowledge. These results clearly indicated that loliolide isolated from Sargassum ringgoldianum subsp. coreanum can protect the cells against $H_2O_2$-induced cell damage or apoptosis.

Keywords

References

  1. Athukorala, Y. & Jeon, Y. -J. 2005. Screening for angiotensin 1-converting enzyme inhibitory activity of Ecklonia cava. J. Food Sci. Nutr. 10:134-139. https://doi.org/10.3746/jfn.2005.10.2.134
  2. Athukorala, Y., Lee, K. -W., Kim, S. -K. & Jeon, Y. -J. 2007. Anticoagulant activity of marine green and brown algae collected from Jeju Island in Korea. Bioresour. Technol. 98:1711-1716. https://doi.org/10.1016/j.biortech.2006.07.034
  3. Blois, M. S. 1958. Antioxidant determination by the use of a stable free radical. Nature 181:1199-1200. https://doi.org/10.1038/1811199a0
  4. Chang, H. W., Jang, K. H., Lee, D., Kang, H. R., Kim, T. -Y., Lee, B. H., Choi, B. W., Kim, S. & Shin, J. 2008. Monoglycerides from the brown alga Sargassum sagamianum: isolation, synthesis, and biological activity. Bioorg. Med. Chem. Lett. 18:3589-3592. https://doi.org/10.1016/j.bmcl.2008.05.008
  5. Gschwind, M. & Huber, G. 1995. Apoptotic cell death induced by β-amyloid 1-42 peptide is cell type dependent. J. Neurochem. 65:292-300.
  6. Heo, S. -J., Cha, S. -H., Lee, K. -W., Cho, S. K. & Jeon, Y. -J. 2005a. Antioxidant activities of chlorophyta and phaeophyta from Jeju Island. Algae 20:251-260. https://doi.org/10.4490/ALGAE.2005.20.3.251
  7. Heo, S. -J., Park, E. -J., Lee, K. -W. & Jeon, Y. -J. 2005b. Antioxidant activities of enzymatic extracts from brown seaweeds. Bioresour. Technol. 96:1613-1623. https://doi.org/10.1016/j.biortech.2004.07.013
  8. Hodges, R. & Porte, A. L. 1964. The structure of loliolide: A terpene from Lolium perenne. Tetrahedron 20:1463-1467. https://doi.org/10.1016/S0040-4020(01)99140-9
  9. Kim, D. -S. & Park, Y. -H. 1985. Uronic acid composition, block structure and some related properties of alginic acid: (3) on alginic acid prepared from Sargassum ringgoldianum. Bull. Korean Fish. Soc. 18:29-36.
  10. Kimura, J. & Maki, N. 2002. New loliolide derivatives from the brown alga Undaria pinnatifida. J. Nat. Prod. 65:57-58. https://doi.org/10.1021/np0103057
  11. Ko, S. -C., Kang, S. -M., Ahn, G., Yang, H. -P., Kim, K. -N. & Jeon, Y. -J. 2010. Antioxidant activity of enzymatic extracts from Sargassum coreanum. J. Korean Soc. Food Sci. Nutr. 39:494-499. https://doi.org/10.3746/jkfn.2010.39.4.494
  12. Kuniyoshi, M. 1985. Germination inhibitors from the brown alga Sargassum crassifolium (Phaeophyta, Sargassaceae). Bot. Mar. 28:501-503. https://doi.org/10.1515/botm.1985.28.11.501
  13. Li, Y., Qian, Z. -J., Ryu, B., Lee, S. -H., Kim, M. -M. & Kim, S. -K. 2009. Chemical components and its antioxidant properties in vitro: an edible marine brown alga, Ecklonia cava. Bioorg. Med. Chem. 17:1963-1973. https://doi.org/10.1016/j.bmc.2009.01.031
  14. Lizard, G., Fournel, S., Genestier, L., Dhedin, N., Chaput,C., Flacher, M., Mutin, M., Panaye, G. & Revillard, J. -P. 1995. Kinetics of plasma membrane and mitochondrial alterations in cells undergoing apoptosis. Cytometry 21:275-283. https://doi.org/10.1002/cyto.990210308
  15. Mosman, T. 1983. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65:55-63. https://doi.org/10.1016/0022-1759(83)90303-4
  16. Muller, H. E. 1985. Detection of hydrogen peroxide produced by microorganism on ABTS-peroxidase medium. Zentrabl. Bakteriol. Mikrobiol. Hyg. A 259:151-154.
  17. Nicoletti, I., Migliorati, G., Pagliacci, M. C., Grignani, F. & Riccardi, C. 1991. A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J. Immunol. Methods 139:271-279. https://doi.org/10.1016/0022-1759(91)90198-O
  18. Okada, N., Shirata, K., Niwano, M., Koshino, H. & Uramoto, M. 1994. Immunosuppressive activity of a monoterpene from Eucommia ulmoides. Phytochemistry 37:281-282. https://doi.org/10.1016/0031-9422(94)85042-9
  19. Okunade, A. L. & Wiemer, D. F. 1985. (-)-loliolide, an antrepellent compound from Xanthoxyllum setulosum. J. Nat. Prod. 48:472-473. https://doi.org/10.1021/np50039a020
  20. Rosenkranz, A. R., Schmaldienst, S., Stuhlmeier, K. M., Chen, W., Knapp, W. & Zlabinger, G. J. 1992. A microplate assay for the detection of oxidative products using 2′,7′-dichlorefluorescein-diacetate. J. Immunol. Methods 156:39-45. https://doi.org/10.1016/0022-1759(92)90008-H
  21. Valdes, L. J. 3rd. 1986. Loliolide from Salvia divinorum. J. Nat. Prod. 49:171. https://doi.org/10.1021/np50043a031
  22. Wang, X. W., Zhan, Q., Coursen, J. D., Khan, M. A., Kontny, H. U., Yu, L., Hollander, M. C., O'Connor, P. M., Fornace, A. J. J. & Harris, C. C. 1999. GADD45 induction of a G2/M cell cycle checkpoint. Proc. Natl. Acad. Sci. U. S. A. 96:3706-3711. https://doi.org/10.1073/pnas.96.7.3706
  23. Zhang, X. -P., Pei, Y. -H., Liu, M. -S., Kang, S. -L. & Zhang, J. -Q. 2010. Chemical constituents from the leaves of Cerbera manghas. Asian Pac. J. Trop. Med. 3:109-111. https://doi.org/10.1016/S1995-7645(10)60046-6

Cited by

  1. In vitrocell-based assays for evaluation of antioxidant potential of plant-derived products vol.50, pp.8, 2016, https://doi.org/10.1080/10715762.2016.1193668
  2. Octaphlorethol A isolated from Ishige foliacea prevents and protects against high glucose-induced oxidative damage in vitro and in vivo vol.38, pp.2, 2014, https://doi.org/10.1016/j.etap.2014.08.001
  3. Identification and large isolation of an anti-inflammatory compound from an edible brown seaweed, Undariopsis peterseniana, and evaluation on its anti-inflammatory effect in in vitro and in vivo zebrafish vol.29, pp.3, 2017, https://doi.org/10.1007/s10811-016-1012-3
  4. Successive solvent extraction and GC–MS analysis for the evaluation of the phytochemical constituents of the filamentous green alga Spirogyra longata vol.41, pp.3, 2015, https://doi.org/10.1016/j.ejar.2015.06.001
  5. Comparison of Saccharina japonica–Undaria pinnatifida Mixture and Minoxidil on Hair Growth Promoting Effect in Mice vol.43, pp.6, 2016, https://doi.org/10.5999/aps.2016.43.6.498
  6. The chloroform fraction ofCitrus limonleaves inhibits human gastric cancer cell proliferation via induction of apoptosis vol.59, pp.3, 2016, https://doi.org/10.3839/jabc.2016.036
  7. Characterization of a bacterioferritin comigratory protein family 1-Cys peroxiredoxin from Candidatus Liberibacter asiaticus vol.254, pp.4, 2017, https://doi.org/10.1007/s00709-016-1062-z
  8. Hydroxy lactones with the gem-dimethylcyclohexane system – Synthesis and antimicrobial activity 2015, https://doi.org/10.1016/j.arabjc.2015.02.018
  9. Towards a better understanding of medicinal uses of the brown seaweed Sargassum in Traditional Chinese Medicine: A phytochemical and pharmacological review vol.142, pp.3, 2012, https://doi.org/10.1016/j.jep.2012.05.046
  10. In Vitro and In Vivo Studies on Quercus acuta Thunb. (Fagaceae) Extract: Active Constituents, Serum Uric Acid Suppression, and Xanthine Oxidase Inhibitory Activity vol.2017, 2017, https://doi.org/10.1155/2017/4097195
  11. Protective effect of a marine polyphenol, dieckol against carbon tetrachloride-induced acute liver damage in mouse vol.35, pp.3, 2013, https://doi.org/10.1016/j.etap.2013.02.013
  12. Loliolide - the most ubiquitous lactone vol.0, pp.0, 2015, https://doi.org/10.1515/fobio-2015-0001
  13. Purification of antioxidative peptide from peptic hydrolysates of Mideodeok (Styela clava) flesh tissue vol.22, pp.2, 2013, https://doi.org/10.1007/s10068-013-0112-y
  14. Taraxerol 4-Methoxybenzoate, anin vitroInhibitor of Photosynthesis Isolated fromPavonia multifloraA.St-Hil. (Malvaceae) vol.13, pp.3, 2016, https://doi.org/10.1002/cbdv.201500049
  15. In vitroAnti-diabetic Activity and Chemical Characterization of an Apolar Fraction ofMorus albaLeaf Water Extract vol.27, pp.6, 2013, https://doi.org/10.1002/ptr.4803
  16. Isolation and identification of a phytotoxic substance from the emergent macrophyte Centrostachys aquatica vol.55, pp.1, 2014, https://doi.org/10.1186/s40529-014-0059-1
  17. Carpesium macrocephalum Attenuates Lipopolysaccharide-Induced Inflammation in Macrophages by Regulating the NF-κB/IκB-α, Akt, and STAT Signaling Pathways vol.41, pp.04, 2013, https://doi.org/10.1142/S0192415X13500626
  18. Preparative isolation of sargachromanol E from Sargassum siliquastrum by centrifugal partition chromatography and its anti-inflammatory activity vol.62, 2013, https://doi.org/10.1016/j.fct.2013.08.010
  19. Acanthus ebracteatus leaf extract provides neuronal cell protection against oxidative stress injury induced by glutamate vol.18, pp.1, 2018, https://doi.org/10.1186/s12906-018-2340-4
  20. Antioxidant and anti-inflammatory functionality of ten Sri Lankan seaweed extracts obtained by carbohydrase assisted extraction pp.2092-6456, 2018, https://doi.org/10.1007/s10068-018-0406-1
  21. Lam. vol.68, pp.4, 2018, https://doi.org/10.1080/09064710.2017.1401114
  22. Microbial Asymmetric Functionalization of β-Cyclocitral-Derived Tetramethyl-Substituted γ-Lactone vol.24, pp.4, 2019, https://doi.org/10.3390/molecules24040666
  23. Loliolide Presents Antiapoptosis and Antiscratching Effects in Human Keratinocytes vol.20, pp.3, 2019, https://doi.org/10.3390/ijms20030651
  24. Phytochemical Investigations of Lonchocarpus Bark Extracts from Monteverde, Costa Rica vol.9, pp.4, 2011, https://doi.org/10.1177/1934578x1400900421
  25. A New Macrolactone, Racemolide Along With Seven Known Compounds With Biological Activities From Mangrove Plant,Lumnitzera racemosa vol.14, pp.6, 2011, https://doi.org/10.1177/1934578x19861255
  26. Monoterpenoid Loliolide Regulates Hair Follicle Inductivity of Human Dermal Papilla Cells by Activating the AKT/β-Catenin Signaling Pathway vol.29, pp.11, 2011, https://doi.org/10.4014/jmb.1908.08018
  27. LEMNA MINOR L. AS A SOURCE OF ANTIOXIDANTS vol.18, pp.1, 2011, https://doi.org/10.15547/tjs.2020.s.01.029
  28. Profiling of antiviral and antioxidant phytochemicals of Pterocephalus frutescens hochist. using high-resolution ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometer vol.16, pp.71, 2011, https://doi.org/10.4103/pm.pm_558_19
  29. (−)-Loliolide Isolated from Sargassum horneri Protects against Fine Dust-Induced Oxidative Stress in Human Keratinocytes vol.9, pp.6, 2011, https://doi.org/10.3390/antiox9060474
  30. Phytochemical Screening and Cytotoxic Effects of Crude Extracts of Pereskia Bleo Leaves vol.26, pp.3, 2011, https://doi.org/10.1080/10496475.2020.1729287
  31. The inhibitory effect of some natural bioactive compounds against SARS-CoV-2 main protease: insights from molecular docking analysis and molecular dynamic simulation vol.55, pp.11, 2011, https://doi.org/10.1080/10934529.2020.1826192
  32. Antioxidant efficacy of (−)-loliolide isolated from Sargassum horneri against AAPH-induced oxidative damage in Vero cells and zebrafish models in vivo vol.32, pp.5, 2011, https://doi.org/10.1007/s10811-020-02154-9
  33. Drying seaweeds using hybrid hot water Goodle dryer (HHGD): comparison with freeze-dryer in chemical composition and antioxidant activity vol.24, pp.1, 2011, https://doi.org/10.47853/fas.2021.e3
  34. Isolation, characterization, in vitro anticancer activity, dft calculations, molecular docking, bioactivity score, drug-likeness and admet studies of eight phytoconstituents from brown alga sargassum vol.1225, pp.None, 2011, https://doi.org/10.1016/j.molstruc.2020.129245
  35. Phytotoxic Activity and Growth Inhibitory Substances from Albizia richardiana (Voigt.) King & Prain vol.11, pp.4, 2011, https://doi.org/10.3390/app11041455
  36. Loliolide, a New Therapeutic Option for Neurological Diseases? In Vitro Neuroprotective and Anti-Inflammatory Activities of a Monoterpenoid Lactone Isolated from Codium tomentosum vol.22, pp.4, 2021, https://doi.org/10.3390/ijms22041888
  37. Lipid Inhibitory Effect of (−)-loliolide Isolated from Sargassum horneri in 3T3-L1 Adipocytes: Inhibitory Mechanism of Adipose-Specific Proteins vol.19, pp.2, 2021, https://doi.org/10.3390/md19020096
  38. Antioxidant and Anti-Inflammatory Effects of White Mulberry (Morus alba L.) Fruits on Lipopolysaccharide-Stimulated RAW 264.7 Macrophages vol.26, pp.4, 2011, https://doi.org/10.3390/molecules26040920
  39. Fucoidan Fractionated from Sargassum coreanum via Step-Gradient Ethanol Precipitation Indicate Promising UVB-Protective Effects in Human Keratinocytes vol.10, pp.3, 2011, https://doi.org/10.3390/antiox10030347
  40. In vivo anti-inflammatory effects of Prasiola japonica ethanol extract vol.80, pp.None, 2011, https://doi.org/10.1016/j.jff.2021.104440
  41. Effects of (-)-Loliolide against Fine Dust Preconditioned Keratinocyte Media-Induced Dermal Fibroblast Inflammation vol.10, pp.5, 2021, https://doi.org/10.3390/antiox10050675
  42. Loliolide from Artemisia princeps Suppresses Adipogenesis in Human Bone Marrow-Derived Mesenchymal Stromal Cells via Activation of AMPK and Wnt/β-catenin Pathways vol.11, pp.12, 2011, https://doi.org/10.3390/app11125435
  43. (-)-Loliolide Isolated from Sargassum horneri Suppressed Oxidative Stress and Inflammation by Activating Nrf2/HO-1 Signaling in IFN-γ/TNF-α-Stimulated HaCaT Keratinocytes vol.10, pp.6, 2011, https://doi.org/10.3390/antiox10060856
  44. Novel oxygen-generation from electrospun nanofibrous scaffolds with anticancer properties: synthesis of PMMA-conjugate PVP-H2O2 nanofibers, characterization, and in vitro bio-eva vol.11, pp.33, 2011, https://doi.org/10.1039/d1ra02575a
  45. Cytotoxic activity, molecular docking, pharmacokinetic properties and quantum mechanics calculations of the brown macroalga Cystoseira trinodis compounds vol.39, pp.11, 2011, https://doi.org/10.1080/07391102.2020.1774418
  46. A new monoterpene-lactone with neuroprotective activity from corn silk vol.35, pp.18, 2011, https://doi.org/10.1080/14786419.2019.1689503
  47. Sustainable Synthesis of Silver Nanoparticles Using Marine Algae for Catalytic Degradation of Methylene Blue vol.11, pp.11, 2011, https://doi.org/10.3390/catal11111377
  48. Metabolities from Marine Sponges of the Genus Callyspongia: Occurrence, Biological Activity, and NMR Data vol.19, pp.12, 2011, https://doi.org/10.3390/md19120663