초록
사석 입자의 운동을 시작하는 한계평균유속은 사석의 평균입경, 수심에 대한 사석의 평균입경 비, Froude수 및 한계평균유속에 대한 난류전단속도 비에 따라 증가함을 실험을 통해 확인하였고, 이 값을 사석의 수리적 안정성을 지배하는 변수로 채택하여 회귀분석을 통한 사석의 안정성 실험식을 개발하였다. 개발된 사석 안정성 식은 기존 실험의 유속범위인 0.36~0.73 m/s에서 0~5.0 m/s까지 확장시켜 실제 하천에 적용 가능성을 검토하였다. 큰 값의 Reynolds수의 확장에 따른 한계평균유속을 포함한 매개변수간의 유용한 상관성을 제시하였다. 실험값으로부터 확장된 큰 값의 Reynolds의 범위에서의 사석 안정성에 대한 평균입경의 산정은 0~3.0 m/s에서는 미국 토목학회 공식과 미개척국에서 제시한 안정성식과 적합함을 보였으며, 3.0~5.0 m/s에서는 미국 토목학회 공식과 잘 일치하였다. 개발된 사석평균입경 결정공식은 일반적으로 미국 토목학회 공식과 잘 일치하였고, 기존 안정성식과 비교한 결과 대부분 잘 일치하는 것으로 확인되었다. 따라서 개발된 사석평균입경 산정식은 높은 사용성을 가지고 있음을 확인하였다.
By examining the experimental results, the critical mean velocity which initiates the movement of riprap is increased with the riprap size in mean diameter, the mean diameter over water depth (d/h), Froude number (Fr), and turbulent shear velocity over critical mean velocity (u*/${\nu}$) which have great correlations among them so these parameters are adopted governing hydraulic stability for riprap. The hydraulic stability equation for riprap is developed by regression analysis. The developed equation is expanded from 0.36~0.73 m/s of experimental range to 0~5.0 m/s for the application in engineering discipline. So many useful relations among those parameters including critical mean velocity are derived by expanding to high Reynolds regions. Mean diameter calculation results by expanding to high Reynolds regions coincide with the calculations of ASCE and USBR at the range of 0~3.0 m/s and the calculation result of ASCE at the range of 3.0~5.0 m/s. The results by developed formulae coincide well with the formulae of ASCE in general and also the results by recently developed existing formulae of hydraulic stability for riprap. Thus, the developed equation has the high applicability in engineering discipline to evaluate the hydraulic stability for riprap.