• Title/Summary/Keyword: hydraulic stability

Search Result 572, Processing Time 0.023 seconds

Construction Monitoring of Geotextile Tube at Young-Jin Bay and Stability Analysis by Hydraulic Model Tests (영진만 지오텍스타일 튜브의 현장 시공계측 및 수리모형시험을 통한 안정성분석)

  • 신은철;오영인;이명호
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.549-556
    • /
    • 2002
  • Geotextile tubes hydraulically or mechanically filled with dredged materials have been applied in hydraulic and coastal engineering in recent years(shore protection structure, detached breakwater, groins and jetty). It can also be used to isolate contaminated material from harbor, detention basin dredging, and to use this unit as dikes for reclamation work. Recently, new preliminary design criteria supported by model and prototype tests, and some stability analysis calculations have been studied. The stability analysis of geotextile tube is composed geotechnical and hydrodynamic analysis. The stability check points are sliding failure, overturning, bearing capacity failure against the wave attack. In this paper presented the construction procedure and in-situ measurement(properties of filling material, effective height variation, stress variation at geotextile tube bottom) of geotextile tube at Young-Jin Bay and stability analysis by theoretical method and hydraulic model tests

  • PDF

Development of Flow Control Block for Hydraulic System of Tunnel Boring Machine (터널 굴착기 유압시스템용 유량 제어 블록 개발)

  • Lee, Jae-Dong;Lim, Sang-Jin
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.20 no.6
    • /
    • pp.929-935
    • /
    • 2018
  • This paper develops a flow control block for a hydraulic system of a tunnel boring machine. The flow control block is a necessary component to ensure stability in the operation of the hydraulic system. In order to know the pressure distribution of the flow control block, the flow analysis was performed using the ANSYS-CFX. It was confirmed that the pressure and flow rate were normally supplied to the hydraulic system even if one of the four ports of the flow control block was not operated. In order to evaluate the structural stability of the flow control block, structural analysis was performed using the ANSYS WORKBENCH. As a result, the safety factor of the flow control block is 1.54 and the structural stability is secured.

Stability Analysis of Green Revetment Media Using Hydraulic Model (수리모형을 이용한 호안녹화기반재의 수리적 안정성 분석)

  • Kwon, Hyo Jin;Kim, Sung Hee;Koo, Bon Hak
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.16 no.4
    • /
    • pp.15-26
    • /
    • 2013
  • In recent years, river maintenance projects using natural methods have been continuously implemented in urban areas and methods emphasizing ecology are being developed and constructed in revetment areas. However, there is insufficient technical review on the hydraulic stability of those revetment methods during the event of flood. Therefore, a hydraulic analysis is necessary for the stream where revetments are applied. This study was conducted to develop an objective test method for the hydraulic stability of green revetment media. For this purpose, hydraulic model tests were performed for the green base materials for revetments. Tests were conducted using experimental devices for the hydraulic model which were installed to simulate the rapid current during the flood. Loss of soil by the hydraulic condition was compared and analyzed with that of dry green revetment media, and the evaluations were made on the corrosion resistance, tractive force, and contractile force. Test results showed that green revetment media had higher corrosion resistance in non-vegetation condition compared to dry green revetment media, and the loss of base materials by the rooting of vegetation showed significant reduction by the vegetation. In addition, results of the allowable tractive force of the base material indicated it is relatively stable in vegetation condition but scouring can occur in non-vegetation condition. Therefore, the development of vegetation in revetment areas is anticipated to be effective for the stability of revetment areas by reducing external forces interacting with the corrosion resistance and stream bank. The green revetment media in expected to contribute to the stability of revetment areas.

A Study Stability Analysis of a PWM Controlled Hydraulic Equipment (PWM 제어되는 유압장치의 안정성 해석)

  • ;Wennmacher, G.
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.6
    • /
    • pp.1469-1478
    • /
    • 1995
  • PWM control is a kind of nonlinear control. The merits of PWM control of hydraulic equipment are the robustness of the high speed on-off valve and its low price. And it is easily implemented to hydraulic equipments with microcomputer. The high speed on-off valve is directly digitally controlled without any D/A converter. The objectives of this study is to analyze the limit cycle which regularly appear in the position control system using high speed on-off valve, and to give a criterion for the stability of this system. To do this, the nonlinear characteristics of PWM and cylinder friction of this system are described by harmonic linearization and the effects of parameter variations to the system stability are examined theoretically and experimentally. Consequently, the availability of the proposed method is confirmed well.

Proper Conditions of Structure to Prevent Eddy Creation in Cooling Water Intake Canal of Stream Power Plant (화력발전소 냉각 취수로내의 와류발생 방지를 위한 구조물의 적정조건검토)

  • 조진훈;천만복
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.465-472
    • /
    • 1999
  • Hydraulic model tests are performed to find economical and hdrqulically stable design of cooling water intake channel of steam power plant. The result of tests show that the standard distributiion of y-components in the chamber of CWP(circulating Water Pump) are recommended below 3.5 to maintain hydraulic stability, so that this value is considered as the design criteria. Common basin is necessary to improve the hydraulic stability of inflow, however the longer basin does not always improve the hydraulic stability , and the optimal length of basin can be found in some range. From the results the flow stability maintained the best condition when the length of basin is 7.2m. Beside the standard tests the auxiliary tests like edge , baffle, trapezoidal section and increase of pump capacity are carried out based on the optimal condition foudn in the standard tests. From the series of tests the economical and hydraulically stable design of intake channel was proposed.

  • PDF

An Experimental Study on Hydraulic Stability of Non-toxic Revetment Block (무독성 호안블록의 수리학적 안정성에 관한 실험적 연구)

  • Kim, Sang Woo;Koo, Young Min;Kim, Young Do;Park, Jae Hyeon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.987-995
    • /
    • 2013
  • The purpose of this study is to examine the hydraulic stability of non-toxic revetment technique for eco-friendly design of the domestic river restoration. Recently, instead of the flood control function-oriented river management policy for the engineering efficiency, the improvement of the environmental performance for the ecological river restoration project is implemented. However, the inappropriate hydraulic design criteria of the new revetment technique happen to the economic losses at flood season frequently. The hydraulic stability of the riprap and the block include the banks of rivers, riverbed protection, scour protection and so on. In this study, the high speed experimental channel was developed, which has the maximum velocity of 3.5 m/s, to perform the hydraulic experiments of the block method with non-toxic glue with various conditions to find the critical velocity of the revetment block for the hydraulic stability.

A Study on Reversal Stability of Hydraulic Excavator for Crane Work (유압 굴삭기의 크레인 작업시 전도 안정성에 관한 연구)

  • Um, Hyuk;Choi, Jong-Hwan;Kim, Seung-Soo;Yang, Soon-Yong;Lee, Jin-Gul
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.4
    • /
    • pp.64-72
    • /
    • 2004
  • In this paper, the dynamic stability of a hydraulic excavator using ZMP concept is considered. When a load is moved in an excavator based on automation, an excavator often loses the stability and falls over. This is because a dynamic element is not included in the moment equilibrium equation that is used in order to judge a reversal. Consequently, reversal distinction algorithm including all a static and a dynamic element along a load movement in crane work is necessary. Zero Moment Point(ZMP) is a point on the floor where the resultant moment of the gravity, the inertial force of the manipulator and the external force is zero. This study is going to interpret the reversal stability of the excavator to which is applied ZMP concept through simulation.

Stability Analysis and Control of the Electro-Hydraul System for Steering of the Unmaned Container Transporter(UCT) (무인 컨테이너 운반차량의 조향을 위한 전기-유압 시스템의 안정도 분석 및 해석)

  • 최재영;윤영진;허남;이영진;이만형
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1999.10a
    • /
    • pp.371-374
    • /
    • 1999
  • This paper present the nonlinear control and the Lyapunov analysis of the nonlinear electro-hydraulic system for steering control of UCT. Electro-hydraulic system itself has the high nonlinearities arisen from the nonlinear characteristics of the pressure-fluid flow in valve and friction in cylinder. These nonlinearities are unmodeled terms in the transfer function. This paper presents the system modeling, analysis of stability based on the Lyapunov function and simulation of the nonlinear hydraulic servo system.

  • PDF

Development of Apparatus for Measuring Hydraulic Resistance of Sea Ground Considering Tidal Current Flow (조류 흐름을 고려한 해양지반 수리저항성능 실험기 개발)

  • Kang, Kyoung-O;Jeong, Hyun-Chel;Kim, Young-Sang
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.1366-1369
    • /
    • 2010
  • Along with the increasing need of sea development, the hydraulic stability of seabed structure on a soft seafloor ground is becoming an issue in the course of seaside development recently. However, the movement and hydraulic resistance or hydraulic stability of seafloor ground are mutually coupled with various phenomena, and there has been no clear proof for the issue, which makes it difficult to forecast. Furthermore, most researches are focused on hydraulic variables and the conditions of marine external force, while there have been few researches into the assessment in consideration of the type of a seafloor ground and the geotechnical characteristics. In addition, according to the periodic change of the flow direction, possible changes in hydraulic resistance performance of the seafloor deserves all the recognition. But there is no way to measure the hydraulic unstability of the sea ground due to tidal flow quantitatively. In this study, conventional hydraulic resistance measurement apparatus was improved to consider direction change of the current flow. Various artificial clayey soil specimens were made from Kaolinite and Jumunjin standard sand and hydraulic resistance tests were performed by changing the flow direction to validate the effect of the direction change on the scour of the seafloor.

  • PDF

A Study on Estimator and Controller Design of VSC Hydraulic Unit (VSC 유압유닛의 압력 추정기 및 제어기 설계에 관한 연구)

  • Yoo Seung-Jin;Kim Beom-Joo;Lee Kyo-Il
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.2 no.4
    • /
    • pp.7-13
    • /
    • 2005
  • This paper presents modeling and ostimator/controller design for the hydraulic system in Vehicle Stability Control(VSC) system. A nonlinear mathematical model of the VSC hydraulic system is proposed and its accuracy is experimentally verified. A brake pressure estimator is then designed based on the derived mathematical model of VSC hydraulic system. And a disturbance observer, which compensates the estimation error between the brake pressure and the computed brake pressure is also designed to enhance the accuracy of the estimator. The proposed controller has the form of a feedback controller and determines explicitly the on/off ratio of valves' driving PWM signals by means of making use of the simplified mathematical model in the VSC hydraulic system. The performance of the designed controller whose feedback signal is generated by the brake pressure estimator is validated through experimental results.

  • PDF