DOI QR코드

DOI QR Code

Anti-Inflammatory and Anti-Oxidative Activity of Methanol Extract from Terminalia chebula Retz., Lavandula spica L., and Dalbergia odorifera T. in RAW 264.7 Cells

가자, 라벤더, 강향의 항염증 및 항산화 활성 검색

  • Chae, In-Gyeong (Department of Food Science and Technology, Keimyung University) ;
  • Yu, Mi-Hee (Department of Food Science and Technology, Keimyung University) ;
  • Kim, Hyuk-Il (Department of Food Science and Technology, Keimyung University) ;
  • Lee, In-Seon (Department of Food Science and Technology, Keimyung University)
  • Received : 2011.01.17
  • Accepted : 2011.03.11
  • Published : 2011.04.30

Abstract

This study was performed to evaluate the anti-inflammatory and antioxidant activities of methanol extract from natural products. Cell viability was determined by MTT assay. The production of NO and TNF-${\alpha}$ were measured by Griess assay and enzyme-linked immunosorbent assay (ELISA). In order to effectively screen for anti-inflammatory agents, we first examined the inhibitory effects of 24 natural products on the production of lipopolysaccharide (LPS)-induced nitric oxide (NO) in RAW 264.7 cells. Three extracts of Terminalia chebula Retz., Lavandula spica L., and Dalbergia odorifera T. significantly inhibited NO production. The three extracts significantly decreased production of NO in a dose-dependent manner. Terminalia chebula Retz. decreased TNF-${\alpha}$ production. Antioxidative effects of the three extracts were measured based on polyphenol and flavonoid contents and DPPH radical scavenging activity assay. The three extracts showed high polyphenol contents as well as strong DPPH scavenging activities. In particular, Terminalia chebula Retz. contained the highest polyphenol and flavonoid levels of 616 and $96\;{\mu}g/mg$, respectively, compared to Lavandula spica L. and Dalbergia odorifera T. As DPPH radical scavensing activities, RC50 values of Terminalia chebula Retz. were $2.09\;{\mu}g/ml$.

염증반응의 중요한 작용인자로 알려진 nitric oxide (NO) 저해율에 대한 24종 천연물 추출물의 효과를 $25\;{\mu}g/ml$의 농도에서 검색해 본 결과, 다른 추출물에 비해 가자, 라벤더, 강향이 우수한 효과를 나타냈다. 하지만 강향은 세포 생존율이 $52.67{\pm}5.66%$인 것으로 보아 세포독성으로 인해 NO 저해율이 높게 나타난 것으로 보여 지므로 농도를 낮춰 다음 실험을 진행하였다. 농도별 NO생성능을 측정해본 결과. 최고농도인 $100\;{\mu}g/ml$에서 가자와 라벤더는 NO 생성량이 20-30%로 감소하였으며, 강향은 $10\;{\mu}g/ml$에서 NO 생성량이 약 30%로 다른 시료에 비해 낮은 농도에서 높은 저해활성을 나타내었다. RAW 264.7 세포주에 LPS와 각각의 시료를 처리하여 염증을 유발한 후 염증인자인 NO의 생성, 그리고 proinflammatory cytokines인 TNF-${\alpha}$의 생성량을 측정한 결과, 강향 추출물은 낮은 농도에서 높은 저해활성을 나타내, LPS로 유도된 염증 인자들을 효과적으로 감소시키는 것으로 나타났다. 각각의 총 폴리페놀 함량은 가자 $616\;{\mu}g/mg$, 라벤더 $73.98\;{\mu}g/mg$, 강향 $161.82\;{\mu}g/mg$으로 세 가지 추출물 모두 높은 함량을 지내고 있었으며, 특히 가자 추출물의 폴리페놀 함량은 매우 높았다. 플라보노이드 함량은 가자 $96.13\;{\mu}g/mg$, 라벤더 $11.77\;{\mu}g/mg$, 강향 $41.21\;{\mu}g/mg$으로 또한 가자 추출물이 가장 높은 함량을 나타내었다. 각각의 $RC_{50}$값은 가자 $2.09\;{\mu}g/ml$, 라벤더 $17.25\;{\mu}g/ml$, 강향 $6.31\;{\mu}g/ml$로 나타났으며 세 가지 시료 모두 낮은 $RC_{50}$값으로 DPPH radical 소거능이 우수하였다. 특히 가자는 천연항산화제인 ascorbic acid ($1.57\;{\mu}g/ml$)와 비슷한 $RC_{50}$값을 나타내 뛰어난 효과로 보여 진다.

Keywords

References

  1. Axtelle, T. and J. Pribble. 2001. IC14, a CD14 specific monoclonal antibody, is a potential treatment for patients with severe sepsis. J. Endotoxin Res. 7, 310-314. https://doi.org/10.1179/096805101101532783
  2. Azad, N., Y. Rojanasakul, and V. Vallyathan. 2008. Inflammation and lung cancer: roles of reactive oxygen/ nitrogen species. J. Toxicol. Environ. Health B. Crit. Rev. 11, 11-15.
  3. Barton, C. C., E. X. Barton, P. E. Ganey, S. L. Kunkel, and R. A. Roth. 2001. Bacterial lipopolysaccharide enhances aflatoxin B1 hepatotoxicity in rats by a mechanism that depends on tumor necrosis factor-${\alpha}$. Hepatology 33, 66-73. https://doi.org/10.1053/jhep.2001.20643
  4. Boumpas, D. T., G. P. Chrousos, and R. L. Wilder. 1993. Glucocorticoid therapy for immune mediated disease: Casic and clinical correlates. Ann. Intern. Med. 119, 1198-1208. https://doi.org/10.7326/0003-4819-119-12-199312150-00007
  5. Brune, B., J. Zhou, and A. Von Knethen. 2003. Nitric oxide, oxidative stress, and apoptosis. Kidney Int. Suppl. 84, 22-24.
  6. Cheon, M. S., T. Y. Yoon, G. Y. Choi, S. J. Kim, A. Y. Lee, B. C. Moon, B. K. Choo, and H. K. Kim. 2009. Comparative study of extracts from Rhubarb on inflammatory activity in Raw 264. 7 cells. Korean J. Med. Crop Sci. 17, 109-114.
  7. Cline, M. J. 1970. Leukocyte function in inflammation: the ingestion, killing, and digestion of microorganism. Ser. Haematol. 3, 3-16.
  8. Delanty, N. and M. A. Dichter. 1998. Oxidative injury in the nervous system. Acta Neurol. Scand. 117, 463-466.
  9. Folin, O. and W. Denis. 1912. On phosphotungstic-phosphomolybdic compounds as color reagents. J. Biol. Chem. 12, 239-249.
  10. Green, L. C., J. L. Reade, and C. F. Ware. 1984. Rapid colometric assay for cell viability: Application to the quantitation of cytotoxic and growth inhibitory lympolines. J. Immuno. Methods 126, 131-138.
  11. Guo, L. Y., T. M. Hung, K. H. Bae, E. M. Shin, H. Y. Zhou, Y. N. Hong, S. S. Kang, H. P. Kim, and Y. S. Kim. 2008. Anti-inflammatory effects of schisandrin isolated from the fruit of Schisandra chinensis Baill. Eur. J. Pharmacol. 591, 293-299. https://doi.org/10.1016/j.ejphar.2008.06.074
  12. Higuchi, M., N. Hisgahi, H. Taki, and T. Osawa. 1990. Cytolytic mechanisms of activated macrophages. tumor necrosis factor and L-arginine-dependent mechanisms act synergistically as the major cytolytic mechanisms of activated macrophages. J. Immunol. 144, 1425-1431.
  13. Hyun, M. S., J. M. Hur, Y. S. Shin, B. J. Song, Y. J. Mun, and W. H. Woo. 2009. Comparison study of white ginseng, red ginseng, and fermented red ginseng on the protective effect of LPS-induced inflammation in Raw 264.7 cells. J. Appl. Biol. Chem. 52, 21-27. https://doi.org/10.3839/jabc.2009.004
  14. Lazarov, S., M. Balutsov, and E. Ianev. 2000. The role of bacterial endotoxins, receptors and cytokines in the pathogenesis of septic (endotoxin) shock. Vutr. Boles. 32, 33-40.
  15. Lee, E. S., H. K. Ju, T. C. Moon, E. Lee, Y. Jahng, S. H. Lee, J. K. Son, S. H. Baek, and H. W. Chang. 2004. Inhibition of nitric oxide and tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) production by propenone compound through blockade of nuclear factor $(NF)-{\kappa}B$ activation in cultured murine macrophages. Biol. Pharm. Bull. 27, 617-620. https://doi.org/10.1248/bpb.27.617
  16. Lee, S. E., N. S. Seong, C. G. Park, and J. S. Seong. 2002. Screening for antioxidative activity of oriental medicinal plant materials. Korean J. Med. Crop. Sci. 10, 171-176.
  17. Lee, S. G., M. H. Yu, S. P. Lee, and I. S. Lee. 2008. Antioxidant activities and induction of apoptosis by methanol extracts from avocado. J. Korean Soc. Food Sci. Nutr. 37, 269-275. https://doi.org/10.3746/jkfn.2008.37.3.269
  18. Moreno, M. I., M. I. Isla, A. R. Sampietro, and M. A. Vattuone. 2000. Comparison of the free radical-scavenging activity of propolis from several regions of Argentina. J. Ethnopharmacol. 71, 109-114. https://doi.org/10.1016/S0378-8741(99)00189-0
  19. Morson, B. C. 1980. Pathology of inflammatory bowel disease. Gastroenterol. Jpn. 15, 184-187.
  20. Mukaida, N., Y. Ishikawa, N. Ikeda, N. Fujioka, S. Watanabe, K. Kuno, and K. Matsushima. 1996. Novel insight into molecular mechanism of endotoxin shock: biochmical analysis of LPS receptor signaling in a cell-free system targeting NF-kapperB and regulation of cytokine production/action through beta2 integrin in vivo. J. Leukoc. Biol. 59, 145-151.
  21. Mu, M. M., D. Chakravortty, T. Sugiyama, N. Koide, K. Takagashi, I. Mori, T. Yoshida, and T. Yokochi. 2001. The inhibitory action of quercetin on lipopolysaccharideinduced nitric oxide production in RAW 264.7 macrophage cells. J. Endotoxin Res. 7, 431-438. https://doi.org/10.1179/096805101101533034
  22. Posadas, I., M. C. Terencio, I. Guilln, M. L. Ferrndiz, J. Coloma, M. Pay, and M. J. Alcaraz. 2000. Co-regulation between cyclo-oxygenase-2 and inducible nitric oxide synthase expression in the time-course of murine inflammation. Naunun-Schmiedebergs Arch. Pharmacol. 361, 98-106. https://doi.org/10.1007/s002109900150
  23. Ryu, J. H., H. Anh, J. Y. Kim, and Y. K. Kim. 2003. Inhibitory activity of plant extracts on nitric oxide synthesis in LPS-activated macrophages. Phytother. Res. 17, 485-489. https://doi.org/10.1002/ptr.1180
  24. Scott, M. G. and R. E. Hancock. 2000. Cationic antimicrobial peptides and their multifunctional role in the immune system. Crit. Rev. Immunol. 20, 407-431.
  25. Seo, W. G., H. O. Pae, G. S. Oh, K. Y. Chai, T. O. Kwon, Y. G. Yun, N. Y. Kim, and H. T. Chung. 2001. Inhibitory rotundus rhizomes on nitric oxide and superoxide production by murine macrophage cell line, Raw 264.7 cells. J. Ethnopharmacol. 76, 59-64. https://doi.org/10.1016/S0378-8741(01)00221-5
  26. Stokes, K. Y., D. Cooper, A. Tailor, and D. N. Granger. 2002. Hypercholesterolemia promotes inflammation and microvascular dysfuntion: role of nitric oxide and superoxide. Free Radical Biol. Med. 33, 1026-1036. https://doi.org/10.1016/S0891-5849(02)01015-8
  27. Surh, Y. J. 2002. Anti-tumor promoting potential of selected spice ingredients with antioxidative and anti-inflammatory activities: a short review. Food Chem. Toxicol. 40, 1091-1097. https://doi.org/10.1016/S0278-6915(02)00037-6
  28. Wang, S., Y. Chen, L. He, Y. Yang, J. Chen, and X. Wang. 2007. Inhibition of vascular smooth muscle cell proliferation by serum from rats treated orally with gastrodia and uncaria decoction. a traditional Chinese formulation. J. Ethnopharmacol. 114, 458-462. https://doi.org/10.1016/j.jep.2007.08.039
  29. Willoughby, D. A. 1975. Human arthritis applied to animal models. Towards a better therapy. Ann. Rheum. Dis. 34, 471-478. https://doi.org/10.1136/ard.34.6.471
  30. Yu, M. H., H. G. Im, H. J. Lee, Y. J. Ji, and I. S. Lee. 2006. Components and their antioxidative of Methanol extracts from sarcocarp and seed of Zizyphus jujube var. inermis Rehder. J. Food Sci. Technol. 38, 128-134.

Cited by

  1. Anti-inflammatory Effect and Antioxidative Activities of Ingredients used in Bibimbab vol.23, pp.2, 2013, https://doi.org/10.5352/JLS.2013.23.2.213
  2. Antioxidant and Antimicrobial Activities of Combined Extracts of Galla rhois, Achyranthes japonica Nakai, Terminalia chebula Retz and Glycyrrhiza uralensis vol.29, pp.1, 2014, https://doi.org/10.7841/ksbbj.2014.29.1.29