DOI QR코드

DOI QR Code

Isolation of Microorganisms and Development of Microbial Augmentation for Treatment of Paper Mill Wastewater

제지폐수 처리용 미생물의 분리 및 복합 미생물제제의 개발

  • Kang, Dae-Ook (Department of Biochemistry and Health Science, Changwon National University) ;
  • Suh, Hyun-Hyo (Department of Environmental Engineering, Gyeongnam National University of Science and Technology)
  • 강대욱 (국립창원대학교 보건의과학과) ;
  • 서현효 (국립경남과학기술대학교 환경공학과)
  • Received : 2011.01.17
  • Accepted : 2011.01.20
  • Published : 2011.04.30

Abstract

This study was performed to investigate the effects of microbial augmentation on the biological treatment of paper mill wastewater. Three bacteria (KN11, KN13, KN27) capable of degrading aromatic compounds and a bacterial strain (GT21) producing an extracellular cellulase were isolated from soil and wastewater by selective enrichment culture. Through morphological, physiological, and biochemical taxonomies, isolated strains of KN11, KN13, KN27, and GT21 were identified as Acinetobacter sp., Neisseria sp., Bacillus sp., and Pseudomonas sp. and named Acinetobacter sp. KN11, Neisseria sp. KN13, Bacillus sp. KN27, and Pseudomonas sp. GT21, respectively. For analysis of non-biodegradable and chemical oxygen demand (COD)-increasing matter in a paper mill wastewater, we utilized GC/MS to detect aromatic compounds and their derivatives containing several substituted functional groups. The microbial augmentation, J30 formulated with the mixture of bacteria including Acinetobacter sp. KN11, Neisseria sp. KN13, Bacillus sp. KN27, and Pseudomonas sp. GT21, was used for the treatment of paper mill wastewater. The optimum temperature and pH for COD removal of the microbial augmentation, J30, were $30^{\circ}C$ and 7.5, respectively. For evaluation of the industrial applicability of the microbial augmentation, J30 in the pilot test, treatment efficiency was examined using paper mill wastewater. The microbial augmentation, J30, showed a COD removal rate of 87%. On the basis of the above results, we designed the wastewater treatment process of the activated sludge system.

제지폐수의 효율적인 생물학적 처리와 폐수특성에 적합한 미생물제제의 개발을 위하여 토양 및 산업폐수로부터 방향족 화합물에 분해활성이 높은 KN11, KN13 및 KN27 균주와 세포 외 섬유소 가수분해효소 생산 균주 GT21 등의 균주를 분리하였다. 형태학적, 생리학적 및 생화학적 분류를 통해 이들 분리주 KN11, KN13, KN27 및 GT21 등은 Acinetobacter sp., Neisseria sp., Bacillus sp., Pseudomonas sp.와 유사한 것으로 판명되어 최종적으로 각각 Acinetobacter sp. KN11, Neisseria sp. KN13, Bacillus sp. KN27, Pseudomonas sp. GT21로 명명하였다. 제지폐수 중 난분해성 물질과 COD 증가원인 물질을 분석하고자 GC/MS를 이용하여 방향족 화합물 및 그 유도체들을 검출하였다. 분리균주 Acinetobacter sp. KN11, Neisseria sp. KN13, Bacillus sp. KN27 및 Pseudomonas sp. GT21의 균체로 구성된 미생물제제 J30을 제조하여 제지폐수의 효율적 처리를 위한 연구에 사용하였다. 미생물제제 J30의 제지폐수에서 COD 제거를 위한 최적온도와 pH는 각각 $30^{\circ}C$와 7.5였으며 배양 60시간에서 최대의 COD 제거효율을 나타내었다. 실험실 규모의 pilot plant에서 미생물제제 J30의 COD 제거효율은 87%의 높은 제거효율을 나타내었다.

Keywords

References

  1. Alfonso, M. D. 1992. Nanofiltration removal of chlorinated organic compounds from alkaline bleaching effluents in a pulp and paper plant. Water Res. 26, 1639-1643. https://doi.org/10.1016/0043-1354(92)90163-X
  2. Ascon-Cabrera, M. and J. M. Lebeault. 1993. Selection of xenobiotic-degrading microorganisms in a biphasic aqueous system. Appl. Environ. Microbiol. 59, 1717-1724.
  3. Ambujom, S. and V. B. Manital. 1995. Phenol degradation by a stable aerobic consortium and its bacterial isolates. Biotechnol. Lett. 17, 443-448. https://doi.org/10.1007/BF00130805
  4. APHA, AWWA, and WEF. 1992. Standard methods for the examination of water and wastewater. 18th eds., APHA, Washington.
  5. Babrock, R. W. Jr. 1991. Enricher-reactor bioaugmentation of activated sludge for degradation of hazardous wastewater. Ph. D. thesis, Univ. Calif. Los Angeles, California.
  6. Babrock, R. W., Jr. K. S. Ro, C. C. Hsieh, and M. K. Stenstorm. 1992. Development of an off-line enricher-reactor process for activated sludge degradation of hazardous wastes. Water Environ. Res. 64, 782-791. https://doi.org/10.2175/WER.64.6.5
  7. Barnard, J. L. 1972. Biological nutrient removal without the addition of chemicals. Water Res. 9, 485-493.
  8. Cowan, N. R. and K. J. Steel. 1974. Manual for the identification bacteria. 2nd eds., Cambridge University, London.
  9. Katayama, T., F. Nakatsubo, and T. Higuchi. 1986. Degradation of a phenyl coumarin, a lignin substructure model by Fusarium solani M-13-1. Mokuzai Gakkaichi 32, 535-544.
  10. Kim, M. G. and W. Y. Ahn. 1998. Biodegradation of kraft lignins by white rot fungi-lignin from pitch pine. J. Korean Eng. 17, 156-170.
  11. Kim, G. H. 1991. Study on COD removal and environmental regulations of paper mill wastewater. pp. 143-151. Vol. 16, Civil and Environmental Institute, Chonbuk National University, Jeonju.
  12. Komagata, K. and K. I. Suzuki. 1987. Lipid and cell-wall analysis in bacterial systematics, pp. 161-207, In Colwell, R. R. and R. Grigorova (eds.), Methods in Microbiology. Vol. 19, Academic Press, London.
  13. Ko, Y. H., I. H. Ha, and K. S. Bae. 1988. Isolation and Characterization of a naphthalene-degrading strain, Pseudomonas putida N3. Korean J. Appl. Microbiol. Biotechnol. 16, 199-204.
  14. Lee, W. S., S. W. Jung, C. S. Park, B. D. Yoon, J. E. Kim, and H. M. Oh. 2001. Biological treatment of wastewater containing chlorinated phenols by a mixed culture. Korean J. Appl. Microbiol. Biotechnol. 29, 115-120.
  15. Legrini, O., E. Oliveris, and A. M. Braun. 1993. Photochemical process for water treatment. Chem. Rev. 93, 671-674. https://doi.org/10.1021/cr00018a003
  16. MacFaddin, J. F. 1984. Biochemical tests for identification for medical bacteria. 2nd eds,. Williams & Wilkins Co., Baltimore, Maryland.
  17. Orhon, D. 1992. The effect of residual COD on the biological treatability of textile wastewater. Water Sci. Technol. 26, 815-822.
  18. Otte, M. P., J. Gagnon, Y. Comeau, N. Matte, C. Greer, and R. Sampson. 1994. Activation of an indigenous microbial consortium for bioaugmentation of pentachlorophenol/ creosote contaminated soils. Appl. Microbiol. Biotechnol. 40, 926-932. https://doi.org/10.1007/BF00174001
  19. Pan, B. and L. Hartmann. 1992. Activity of biomass in RBC system treating pulp Industrial wastewater. J. Environ. Eng. 118, 744-754. https://doi.org/10.1061/(ASCE)0733-9372(1992)118:5(744)
  20. Peter, H. A. S., S. M. Nicholas, M. E. Sharpe, and J. F. Holt. 1986. Bergey's manual of systematic bacteriology, Williams and Wikins Co., Baltimore, Maryland.
  21. Pfral, C., G. Ditzelmuller, M. Loidl, and F. Streichsbier. 1990. Microbial degredation of xenobiotic compounds. FEMS Microbiol. Ecol. 73, 255-262.
  22. Son, Y. J., O. J. Sul, D. K. Chung, I. S. Han, Y. J. Choi, and C. S. Jeong. 1997. Isolation and Characterization of Trichoderma sp. C-4 producing cellulases. Korean J. Appl. Microbiol. Biotechnol. 25, 346-353.
  23. Stanbury, P. F. and A. Whitaker. 1984. The isolation, preservation and improvement of Industrial microorganisms. pp. 26-73, In Whitaker, A. and P. F. Stanbury (eds.), Principles of Fermentation Technology. Pergamon Press, Oxford.
  24. Tamaoka, K. and K. Komagata. 1984. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol. Lett. 25, 125-128. https://doi.org/10.1111/j.1574-6968.1984.tb01388.x
  25. Vaishnav, D. D. and E. Korthals. 1989. Effect of microbial concentration on biodegradation rates of phenols. J. Ind. Microbiol. 4, 307-314. https://doi.org/10.1007/BF01577354
  26. Wood, P. J., J. D., Erfle. and R. M. Teather. 1988. Use of complex formation between Congo Red and polysaccharides in detection and assay of polysaccharide hydrolases. pp. 63-65, In Wood, E. A. and S. T. Kelloge (eds.), Method in Enzymology. Vol. 160, Academic Press, Orlando, Florida.

Cited by

  1. Development of Microbial Augmentation for the Treatment of Recalcitrant Industrial Wastewater Containing Chlorinated Organic Compounds vol.24, pp.8, 2014, https://doi.org/10.5352/JLS.2014.24.8.887
  2. A Study Bioremediation of Tidal Flat by Microorganism in Pilot Scale Test vol.24, pp.10, 2014, https://doi.org/10.5352/JLS.2014.24.10.1110
  3. Application of Conifer Leave Powder to the Papermaking Process as an Organic Filler vol.46, pp.4, 2014, https://doi.org/10.7584/ktappi.2014.46.4.062