Development of New Molecular Markers for the Identification of Male Sterile Cytoplasm in Peppers (Capsicum annuum L.)

  • Min, Woong-Ki (Center for Agriculture and Life Science Research, Dongbu Advanced Research Institute, Dongbu Hannong Co., Ltd.) ;
  • Kim, Byung-Dong (Center for Plant Molecular Genetics and Breeding Research, Seoul National University) ;
  • Kim, Sung-Gil (Department of Plant Biotechnology, Chonnam National University) ;
  • Lee, Sang-Hyeob (Center for Agriculture and Life Science Research, Dongbu Advanced Research Institute, Dongbu Hannong Co., Ltd.)
  • Received : 2010.11.15
  • Accepted : 2011.01.12
  • Published : 2011.02.28

Abstract

Cytoplasmic male sterility (CMS) induced by mutant mitochondria genome, has been used for commercial seed production of $F_1$ hybrid cultivars in diverse crops. In pepper (Capsicum annuum L.), two sterile cytoplasm specific gene organization, atp6-2 and coxII were identified. An open reading frame, orf456 nearby coxII gene has been speculated to induce male sterility (MS) by mutagenic analysis. Moreover, molecular markers for atp6-2 and coxII of mitochondrial genotype (mitotype) were developed. However, the Cytoplasmic MS specific markers, atp6SCAR and coxIISCAR markers appeared in both N and S cytoplasms when polymerase chain reaction (PCR) cycles prolonged more than 40 cycles. Since the reported molecular markers were dominant markers, the presence of the faint sterile-specific band in normal cytoplasm may lead to the mis-classification of pepper breeding lines. To solve this problem, one common forward primer and two different reverse primers specific to normal coxII and sterile orf456 genes were designed after analyzing their gene organizations. By using these three primers, N and S coxII specific bands were co-amplified in male-sterile lines, but only normal coxII specific band was amplified in maintainer lines. Since the reverse primer for sterile coxII was specifically designed 275 bp downstream of orf456, relatively stable PCR amplification patterns were observed regardless of the number of PCR cycles. These primer sets easily identified different mitotypes among the divergent breeding lines, commercial cultivars and diverse germplasms.

Keywords

References

  1. Albert, B., B. Godelle, and P.H. Gouyon. 1998. Evolution of the plant mitochondrial genome: dynamics of duplication and deletion of sequences. J. Mol. Evol. 46:155-158. https://doi.org/10.1007/PL00006290
  2. Balk, J. and C.J. Leaver. 2001. The PET1-CMS mitochondrial mutation in sunflower is associated with premature programmed cell death and cytochrome c release. Plant Cell 13:1803-1818.
  3. Bellaoui, M., A. Martin-Canadell, G. Pelletier, and F. Budar. 1998. Low copy-number molecules are produced by recombination, actively maintained and can be amplified in the mitochondrial genome of Brassicaceae: relationship to reversion of the male sterile phenotype in some cybrids. Mol. Gen. Genet. 257:177-185. https://doi.org/10.1007/s004380050637
  4. Bergman, P., J. Edqvist, I. Farbos, and K. Glimelius. 2000. Male sterile tobacco displays abnormal mitochondrial atp1 transcript accumulation and reduced floral ATP/ADP ratio. Plant Mol. Biol. 42:531-544. https://doi.org/10.1023/A:1006388814458
  5. Budar, F., P. Touzet, and R. De Paepe. 2003. The nucleomitochondrial conflict in cytoplasmic male sterilities revised. Genetica 117:3-16. https://doi.org/10.1023/A:1022381016145
  6. Cui, X., R.P. Wise, and P.S. Schnable. 1996. The rf2 nuclear restorer gene of male-sterile T-cytoplasm maize. Science 272:1334-1336. https://doi.org/10.1126/science.272.5266.1334
  7. Forner, J., B. Weber, C. Wietholter, R.C. Meyer, and S. Binder. 2005. Distant sequences determine 5' end formation of cox3 transcripts in Arabidopsis thaliana ecotype C24. Nucleic Acids Res. 33:4673-4682. https://doi.org/10.1093/nar/gki774
  8. Fujii, S. and K. Toriyama. 2008. Genome barriers between nuclei and mitochondria exemplified by cytoplasmic male sterility. Plant Cell Physiol. 49:1484-1494. https://doi.org/10.1093/pcp/pcn102
  9. Gulyas, G., Y. Shin, H. Kim, J.-S. Lee, and Y. Hirata. 2010. Altered transcript reveals an orf507 sterility-related gene in chili pepper (Capsicum annuum L.). Plant Mol. Biol. Rep. 28:605-612. https://doi.org/10.1007/s11105-010-0182-4
  10. Hack, E., C. Lin, H. Yang, and H.T. Horner. 1991. T-URF13 protein from mitochondria of texas male sterile maize (Zea mays L.). Plant Physiol. 95:861-870. https://doi.org/10.1104/pp.95.3.861
  11. Handa, H. 2003. The complete nucleotide sequence and RNA editing content of the mitochondrial genome of rapeseed (Brassica napus L.): comparative analysis of the mitochondrial genomes of rapeseed and Arabidopsis thaliana. Nucleic Acids Res. 31:5907-5916. https://doi.org/10.1093/nar/gkg795
  12. Hanson, M.R. 1991. Plant mitochondrial mutations and male sterility. Annu. Rev. Genet. 25:461-486. https://doi.org/10.1146/annurev.ge.25.120191.002333
  13. Hanson, M.R. and S. Bentolila. 2004. Interactions of mitochondrial and nuclear genes that affect male gametophyte development. Plant Cell 16:S154-S169. https://doi.org/10.1105/tpc.015966
  14. Jo, Y.D. 2007. Comparative analysis of DNA structure containing cox2 and atp6-2 genes between fertile and CMS chili pepper (Capsicum annuum L.). MS Thesis, Seoul Natl. Univ., Seoul, Korea.
  15. Kim, D.H. and B.D. Kim. 2005. Development of SCAR markers for early identification of cytoplasmic male sterility genotype in chili pepper (Capsicum annuum L.). Mol. Cells 20:416-422.
  16. Kim, D.H. and B.D. Kim. 2006. The organization of mitochondrial atp6 gene region in male fertile and CMS lines of pepper (Capsicum annuum L.). Curr. Genet. 49:59-67. https://doi.org/10.1007/s00294-005-0032-3
  17. Kim, D.H., J.G. Kang, and B.D. Kim. 2007a. Isolation and characterization of the cytoplasmic male sterility-associated orf456 gene of chili pepper (Capsicum annuum L.). Plant Mol. Biol. 63:519-532. https://doi.org/10.1007/s11103-006-9106-y
  18. Kim, S., H. Lim, S. Park, K. Cho, S. Sung, D. Oh, and K. Kim. 2007b. Identification of a novel mitochondrial genome type and development of molecular makers for cytoplasm classification in radish (Raphanus sativus L.). Theor. Appl. Genet. 115:1137-1145. https://doi.org/10.1007/s00122-007-0639-5
  19. Knoop, V. 2004. The mitochondrial DNA of land plants: peculiarities in phylogenetic perspective. Curr. Genet. 46:123-139.
  20. Kubo, T., S. Nishizawa, A. Sugawara, N. Itchoda, A. Estiati, and T. Mikami. 2000. The complete nucleotide sequence of the mitochondrial genome of sugar beet (Beta vulgaris L.) reveals a novel gene for tRNAcys (GCA). Nucleic Acids Res. 28: 2571-2576. https://doi.org/10.1093/nar/28.13.2571
  21. Notsu, Y., S. Masood, T. Nishikawa, N. Kubo, G. Akiduki, M. Nakazono, A. Kirai, and K. Kadowaki. 2002. The complete sequence of the rice (Oryza sativa L.) mitochondrial genome: frequent DNA sequence acquisition and loss during the evolution of flowering plants. Mol. Genet. Genomics 268:434-445. https://doi.org/10.1007/s00438-002-0767-1
  22. Palmer, J.D. 1988. Intraspecifc variation and multicircularity in Brassica mitochondrial DNAs. Genetics 118:341-351.
  23. Palmer, J.D. and L.A. Herbon. 1987. Unicircular structure of the Brassica hirta mitochondrial genome. Curr. Genet. 11:565-570. https://doi.org/10.1007/BF00384620
  24. Palmer, J.D. and C.R. Shields. 1984. Tripartite structure of the Brassica campestris mitochondrial genome. Nature 307:437-439. https://doi.org/10.1038/307437a0
  25. Peterson, P.A. 1958. Cytoplasmically inherited male sterility in Capsicum. Am. Nat. 92:111-119. https://doi.org/10.1086/282017
  26. Rhoads, D.M., C.S. Levings III, and J.N. Siedow. 1995. URF13, a ligand-gated, pore-forming receptor for T-toxin in the innner membrane of cms-T mitochondria. J. Bioenerg. Biomembr. 27:437-445. https://doi.org/10.1007/BF02110006
  27. Sakai, T. and J. Imamura. 1993. Evidence for a mitochondrial sub-genome containing radish atpA in a Brassica napus cybrid. Plant Sci. 90:95-103. https://doi.org/10.1016/0168-9452(93)90160-2
  28. Schnabel, P.S. and R.P. Wise. 1998. The molecular basis of cytoplasmic male sterility and fertility restoration. Trends Plant Sci. 3:175-180. https://doi.org/10.1016/S1360-1385(98)01235-7
  29. Small, I., R. Suffolk, and C.J. Leaver. 1989. Evolution of plant mitochondrial genomes via substoichiometric intermediates. Cell 58:69-76. https://doi.org/10.1016/0092-8674(89)90403-0
  30. Unseld, M., J.R. Marienfeld, P. Brandt, and A. Brennicke. 1997. The mitochondrial genome of Arabidopsis thaliana contains 57 genes in 366,924 nucleotides. Nature Genet. 15:57-61.
  31. Ward, B.L., R.S. Anderson, and A.J. Bendich. 1981. The mitochondrial genome is large and variable in a family of plants (Cucurbitaceae). Cell 25:793-803. https://doi.org/10.1016/0092-8674(81)90187-2
  32. Zaegel, V., B. Guermann, M. Le Ret, C. Andrés, D. Meyer, M. Erhardt, J. Canaday, J.M. Gualberto, and P. Imbault. 2006. The plant-specific ssDNA binding protein OSB1 is involved in the stoichiometric transmission of mitochondrial DNA in Arabidopsis. Plant Cell 18:3548-3563. https://doi.org/10.1105/tpc.106.042028