Enhancement of Health Functional Compounds in the Sprouts of Barley (Hordeum vulgare L.) Cultivars by UV-B and Salicylic Acid Treatments

  • Kim, Yong-Hyun (Natural Science Research Institute, University of Seoul) ;
  • Kim, Seong-Min (Natural Science Research Institute, University of Seoul) ;
  • Cheng, Hyo-Cheng (Department of Environmental Horticulture, University of Seoul) ;
  • Lee, Young-Woo (Natural Science Research Institute, University of Seoul) ;
  • Shim, Ie-Sung (Department of Environmental Horticulture, University of Seoul)
  • Received : 2010.09.29
  • Accepted : 2010.12.08
  • Published : 2011.02.28

Abstract

Barley (Hordeum vulgare L.) sprouts are a vegetable commonly used as a functional food material due to its high vitamin C concentration and antioxidant activity. In this experiment, we measured the changes in the antioxidant activity of several barley cultivars as well as in the concentrations of related compounds such as ascorbate and glutathione upon treatment with UV-B or salicylic acid (SA). The six barely cultivars were grown in a plant growth chamber (25/$18^{\circ}C$, 14/10 h, 200 ${\mu}mol{\cdot}m^{-1}{\cdot}s^{-1}$, 70% relative humidity) for 10 days. All barely cultivars showed different 1, 1-diphenyl-2-picryl-hydrazyl (DPPH) scavenging activities, which were increased by UV-B treatment and not by SA treatment. The changes in ascorbate concentrations were correlated with DPPH scavenging activity in both the treatments, suggesting that the antioxidant activity in barley sprouts was mainly dependent on ascorbate concentration. Furthermore, changes in ascorbate concentration showed similar tendencies to changes in free sugar concentration, especially glucose and sucrose, in both treatments. On the other hand, the concentrations of glutathione and cysteine highly increased by SA treatment, representing different tendencies compared to the DPPH scavenging activity and ascorbate concentration. 'Donghanchal' cultivar showed comparatively higher antioxidant activity, both constitutively and inducingly by UV-B treatment, with its higher concentrations of ascorbate and glutathione. These results suggest that barley sprouts could be used as a health-functional vegetable, contributing to the overall supply of antioxidant and sulfur-containing organic compounds.

Keywords

References

  1. Alscher, R.G. 1989. Biosynthesis and antioxidant function of glutathione in plants. Physiol. Plant 77:457-464. https://doi.org/10.1111/j.1399-3054.1989.tb05667.x
  2. Alscher, R.G. and J.L. Hess. 1993. Antioxidants in higher plants. CRC Press. Boca Raton. Florida. USA.
  3. Ananieva, E.A., K.N. Christov, and L.P. Popova. 2004. Exogenous treatment with salicylic acid leads to increased antioxidant capacity in leaves of barley plants exposed to paraquat. J. Plant Physiol. 161:319-328. https://doi.org/10.1078/0176-1617-01022
  4. Bergquist, S.Å.M., U.E. Gertsson, and M.E. Olsson. 2006. Influence of growth stage and postharvest storage on ascorbic acid and carotenoid content and visual quality of baby spinach (Spinacia oleracea L.). J. Sci. Food Agr. 86:346-355. https://doi.org/10.1002/jsfa.2373
  5. Bolink, E.M., I. van-Schalkwijk, F. Posthumus, and P.R. van- Hasselt. 2001. Growth under UV-B radiation increases tolerance to high-light stress in pea and bean plants. Plant Ecol. 154: 149-156.
  6. Costa H., S.M. Gallego, and M.L. Tomaro. 2002. Effect of UV-B radiation on antioxidant defense system in sunflower cotyledons. Plant Sci. 162:939-945. https://doi.org/10.1016/S0168-9452(02)00051-1
  7. Ferreyra, R.M., S.Z. Viña, A. Mugridge, and A.R. Chaves. 2007. Growth and ripening season effects on antioxidant capacity of strawberry cultivar Selva. Scientia Hort. 112:17-32.
  8. Foyer, C.H. 1993. Ascorbic acid. P. 31-58 In: R.G. Alscher and J.L. Hess (eds.) Antioxidants in higher plants. CRC Press. Boca Raton. Florida. USA.
  9. Foyer, C.H., F.L. Theodoulou, and S. Delrot. 2001. The functions of inter-and intracellular glutathione transport systems in plants. Trends Plant Sci. 6:486-492. https://doi.org/10.1016/S1360-1385(01)02086-6
  10. Foyer, C.H., M. Lelandais, and K.J. Kunert. 1994. Photooxidative stress in plants. Physiol. Plant 92:696-717. https://doi.org/10.1111/j.1399-3054.1994.tb03042.x
  11. Freeman, J.L., D. Garcia, D. Kim, A. Hopf, and D.E. Salt. 2005. Constitutively elevated salicylic acid signals glutathione-mediated nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Physiol. 137:1082-1091. https://doi.org/10.1104/pp.104.055293
  12. Ganesan, V. and G. Thomas. 2001. Salicylic acid response in rice: influence of salicylic acid on $H_{2}O_{2}$ accumulation and oxidative stress. Plant Sci. 160:1095-1106. https://doi.org/10.1016/S0168-9452(01)00327-2
  13. Hayat, S., B. Ali, and A. Ahmad. 2007. Salicylic acid: Biosynthesis, metabolism and physiological role in plants. P. 1-14 In: S. Hayat and A. Ahmad (eds.) Salicylic acid- a plant hormone. Springer, Netherland
  14. Inze, D. and M.V. Montagu. 1995. Oxidative stress in plants. Curr. Opin. Biotechnol. 6:153-l58. https://doi.org/10.1016/0958-1669(95)80024-7
  15. Kalbin, G., A.B. Ohlsson, T. Berglund, J. Rydström, and A. Strid. 1997. Ultraviolet-B-radiation-induced changes in nicotinamide and glutathione metabolism and gene expression in plants. Eur. J. Biochem. 249:465-472. https://doi.org/10.1111/j.1432-1033.1997.00465.x
  16. Khalil, A.W., A. Zeb, F. Mahmood, S. Tariq, A.B. Khattak, and H. Shah. 2007. Comparison of sprout quality characterisitics of desi and kabuli type chickpea cultivars (Cicer arietinum L.). LWT. Food Sci. Technol. 40:937-945. https://doi.org/10.1016/j.lwt.2006.05.009
  17. Kim, J.H., D.J. Yu, and H.J. Lee. 2006. Salicylic acid modifies antioxidative system of 'Kyoho' grapevine cultivar as exposed to low temperature. Hort. Environ. Biotechnol. 47:280-287.
  18. Kim, J.S., I.S. Shim, I.S. Kim, and M.J. Kim. 2010. Change of cysteine, glutathione and ascorbic acid content in chinese cabbage, head lettuce and spinach by the growth stage. Kor. J. Hort. Sci. Technol. 28:186-191.
  19. Kim, S.M., Y.H. Kim, and I.S. Shim, 2009.Research on the barley (Hordeum vulgare L.) cultivars for use of functional barley bud. Kor. J. Hort. Sci. Technol. 27(Suppl. І):177 (Abstr.).
  20. Kocsy, G., P. von-Ballmoos, M. Suter, A. Rüegsegger, U. Galli, G. Szalai, G. Galiba, and C. Brunold. 2000. Inhibition of glutathione synthesis reduces chilling tolerance in maize. Planta. 211:528-536. https://doi.org/10.1007/s004250000308
  21. Kwon, J.K., J.H. Lee, D.K. Park, and Y.H. Choi. 2003a. Overgrowth retardation and physiological changes in plug-grown fruit vegetable transplants by ultraviolet-B irradiation. Kor. J. Hort. Sci. Technol. 21 (Suppl. I):124 (Abstr.).
  22. Kwon, J.K., J.H. Park, J.H. Lee, D.K. Park, Y.H .Choi, and M.A. Cho. 2003b. Physiological changes and antioxidant enzyme activities of fruit vegetable plug transplants Irradiated with different UV-B intensities. J. Kor. Soc. Hort. Sci. 44:464-469.
  23. Linster, C.L. and S.G. Clarke. 2008. L-Ascorbate biosynthesis in higher plants: the role of VTC2. Trends Plant Sci. 13:567-573. https://doi.org/10.1016/j.tplants.2008.08.005
  24. Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7:405-410. https://doi.org/10.1016/S1360-1385(02)02312-9
  25. Mittova, V., F.L. Theodoulou, G. Kiddle, L. Gomez, M. Volokita, M. Tal, C.H. Foyer, and M. Guy. 2003. Coordinate induction of glutathione biosynthesis and glutathione-metabolizing enzymes is correlated with salt tolerance in tomato. FEBS Lett. 554:417-421. https://doi.org/10.1016/S0014-5793(03)01214-6
  26. Musil, C.F. 1995. Differential effects of elevated ultraviolet-B radiation on the photochemical and reproductive performance of dicotyledonous and monocotyledons arid-environment ephemerals. Plant Cell Environ. 18:844-854. https://doi.org/10.1111/j.1365-3040.1995.tb00593.x
  27. Navarro, J.M., P. Flores, C. Garrido, and V. Martinez. 2006. Changes in the contents of antioxidant compound in pepper fruits at different ripening stages, as affected by salinity. Food Chem. 96:66-73. https://doi.org/10.1016/j.foodchem.2005.01.057
  28. Pallardo, F.V., J. Markovic, and J. Vina. 2009. Cellular compartmentalization of glutathione. p. 35-45 In: R. Masella and G. Mazza (eds.) Glutathione and sulfur amino acids in human health and disease. Wiley and Sons, Hoboken, New Jersey.
  29. Rao, M.V., G. Paliyath, D.P. Ormrod, D.P. Murr, and C.B. Watkins. 1997. Influence of salicylic acid on $H_{2}O_{2}$ production, oxidative stress, and $H_{2}O_{2}$-metabolizing enzymes (salicylic acid-mediated oxidative damage requires $H_{2}O_{2}$). Plant Physiol. 115:137-149. https://doi.org/10.1104/pp.115.1.137
  30. Reddy, A.R., K.V. Chaitanya, and M. Vivekanandan. 2004. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J. Plant Physiol. 161:1189-1202. https://doi.org/10.1016/j.jplph.2004.01.013
  31. Shanker, A.K., M. Djanaguiraman, R. Sudhagar, C.N. Chandrashekar, and G. Pathmanabhan. 2004. Differential antioxidative response of ascorbate glutathione pathway enzymes and metabolites to chromium speciation stress in green gram (Vigna radiate (L.) R.Wilczek. cv CO 4) roots. Plant Sci. 166:1035-1043. https://doi.org/10.1016/j.plantsci.2003.12.015
  32. Smirnoff, N. and J.E. Pallanca. 1996. Ascorbate metabolism in relation to oxidative stress. Biochemical Soc. Trans. 24:472-478.
  33. Srivastava, M.K. and U.N. Dwivedi. 1998. Salicylic acid modulates glutathione metabolism in pea seedlings. J. Plant Physiol. 153:409-414. https://doi.org/10.1016/S0176-1617(98)80168-5
  34. Stoilova, I., A. Krastanov, A. Stoyanova, P. Denev, and S. Gargova. 2007. Antioxidant activity of a ginger extract (Zingiber officinale). Food Chem. 102:764-770. https://doi.org/10.1016/j.foodchem.2006.06.023
  35. Vaidyanathan, H., P. Sivakumar, R. Chakrabarty, and G. Thomas. 2003. Scavenging of reactive oxygen species in NaCl-stressed rice (Oryza sativa L.) differential response in salt-tolerant and sensitive varieties. Plant Sci. 165:1411-1418. https://doi.org/10.1016/j.plantsci.2003.08.005
  36. Walker, M.A. and B.D. Mckersie. 1993. Role of the ascorbateglutathione antioxidant system in chilling resistance of tomato. J. Plant Physiol. 141:234-239. https://doi.org/10.1016/S0176-1617(11)80766-2
  37. Wang, L.J. and S.H. Li. 2006. Salicylic acid-induced heat or cold tolerance in relation to $Ca^{2+}$ homeostasis and antioxidant systems in young grape plants. Plant Sci. 170:685-694. https://doi.org/10.1016/j.plantsci.2005.09.005
  38. Wang, S.Y., H.J. Jiao, and M. Faust. 1991. Changes in ascorbate, glutathione, and related enzyme activities during thidiazuroninduced bud break of apple. Physiol. Plant 82:231-236. https://doi.org/10.1111/j.1399-3054.1991.tb00086.x
  39. Wong, S.P., L.P. Leong, and J.H.W. Koh. 2006. Antioxidant activities of aqueous extracts of selected plants. Food Chem. 99:775-783. https://doi.org/10.1016/j.foodchem.2005.07.058
  40. Yun, H.K., Y.C. Kim, K.Y. Kim, T.C. Seo, and J.W. Lee. 2002. Effect of UV-B irradiation on the growth and antioxidant contents of some leaf vegetables. J. Kor. Hort. Sci. 43:170- 172.
  41. Zhang, J. and M.B. Kirkham. 1996. Antioxidant responses to drought in sunflower and sorghum seedlings. New Phytol. 132:361-373. https://doi.org/10.1111/j.1469-8137.1996.tb01856.x