DOI QR코드

DOI QR Code

MHI의 형태 정보를 이용한 동작 인식

Gesture Recognition using MHI Shape Information

  • 투고 : 2010.09.08
  • 심사 : 2011.01.10
  • 발행 : 2011.04.30

초록

본 논문에서는 MHI(Motion History Image)의 형태학적 정보를 이용하여 동작을 인식하는 제스처 인식(Gesture Recognition) 시스템을 제안한다. 입력되는 영상으로부터 동작에 관한 정보를 제공하는 MHI를 획득하고, 이 MHI로부터 x, y 각각의 좌표에 대한 기울기(gradient) 영상을 추출한다. 각각의 기울기 영상에 형태 문맥기법(shape context method)을 적용하여 형태 정보를 추출하고, 추출된 형태 정보 값들을 특징 값으로 사용한다. 이렇게 획득한 특징값들을 최종적으로 SVM(Support Vector Machine) 분류기로 학습 및 분류하여 동작을 인식한다. 제안하는 시스템은 MHI의 형태학적인 정보들을 사용함으로써 동작의 방향성을 인식할수 있고 다수 사람의 동작 인식이 가능하다. 뿐만 아니라 간단한 특징 추출 방법으로 높은 인식률의 시스템을 구현하였다.

In this paper, we propose a gesture recognition system to recognize motions using the shape information of MHI (Motion History Image). The system acquires MHI to provide information on motions from images with input and extracts the gradient images from such MHI for each X and Y coordinate. It extracts the shape information by applying the shape context to each gradient image and uses the extracted pattern information values as the feature values. It recognizes motions by learning and classifying the obtained feature values with a SVM (Support Vector Machine) classifier. The suggested system is able to recognize the motions for multiple people as well as to recognize the direction of movements by using the shape information of MHI. In addition, it shows a high ratio of recognition with a simple method to extract features.

키워드

참고문헌

  1. A. Corradini, H.-M. Gross, "Camera-based gesture recognition for robot control," Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks IJCNN 2000, Vol.4, pp.133-138, July 2000.
  2. A. Corradini, "Dynamic Time Warping for Off-line Recognition of a Small Gesture Vocabulary," In Proceedings of the International Workshop on Recognition, Analysis and Tracking of Faces and Gestures in Real-Time Systems, pp. 82-89, July 2001.
  3. Y. Zhu, G. Xu "A Real-Time Approach to the Spotting, Representation, and Recognition of Hand Gestures for Human-Computer Interaction," Computer Vision and Image Understanding, pp.189-208, Mar 2002.
  4. H. Tanie, K. Yamane and Y. Nakamura "High Marker Density Motion Capture by Retroreflective Mesh Suit," International Conference on Robotics and Automation, pp.2884-2889, Apr 2005.
  5. S. Hashi, Y. Tokunaga, S. Yabukami, M. Toyada, K. Ishiyama, Y. Okazaki, K.I Arai, "Development of real-time and highly accurate wireless motion capture system utilizing soft magnetic core," IEEE Transactions on Magnetics, Vol.41, pp.4191-4193, Oct 2005. https://doi.org/10.1109/TMAG.2005.854839
  6. N. Miller, O.C. Jenkins, M. Kallmann, M.J. Mataric, "Motion capture from inertial sensing for untethered humanoid teleoperation," IEEE/RAS International Conference on Humanoid Robots, Vol.2, pp.547-562, Nov 2004.
  7. S. Yabukami, H. Kikuchi, M. Yamaguchi, "Motion Capture System of Magnetic Makers Using Three-Axial Magnetic Field Sensor," IEEE Transactions on magnetics, Vol.36, pp.3646-3648, Sept 2000. https://doi.org/10.1109/20.908928
  8. Y.Yacoob and M.J.Black, "Parameterized modeling and recognition of activities," Journal of Computer Vision and Image Understanding, Vol.73, pp.232-247, Feb 1999. https://doi.org/10.1006/cviu.1998.0726
  9. C.H. Esteban, F. Schmitt, "Silhouette and stereo fusion for 3D object modeling," Computer Vision and Image Understanding, Vol.96, pp.367-392, Dec 2004. https://doi.org/10.1016/j.cviu.2004.03.016
  10. A. F. Bobick and J. W. Davis, ''The Recognition of Human Movement Using Temporal Templates,'' IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.23, No.3, pp.257-267, Mar 2001. https://doi.org/10.1109/34.910878
  11. R. Venkatesh Babu, K.R. Ramakrishnan, "Recognition of human actions using motion history information," Image and Vision Computing, Vol.22, pp.597-607, Aug 2004. https://doi.org/10.1016/j.imavis.2003.11.004
  12. R. Munoz-Salinas, R. Medina-Carnicer, F.J. Madrid- Cuevas, A. Carmona-Poyato, "Depth silhouettes for gesture recognition", Pattern Recognition Letters, Vol 29, pp.319-329, Feb 2008. https://doi.org/10.1016/j.patrec.2007.10.011
  13. L. Diaz-Mas, R. Munoz-Salinas, F.J. Madrid- Cuevas, R. Medina-Carnicer, "Shape from silhouette using Dempster-Shafer theory", Pattern Recognition, Vol 43, pp.2119-2131, June 2010. https://doi.org/10.1016/j.patcog.2010.01.001
  14. L.Zelnik Manor and M.Irani, "Event-based analysis of video," IEEE Conference on Computer Vision and Pattern Recognition, Vol.2, pp.123-130, Dec 2001.
  15. S. Belongie, J. Malik, J. Puzicha, "Shape matching and object recognition using shape contexts," IEEE Transactions On Pattern Analysis and Machine Intelligence, Vol.24, No.24, pp.509-522, Apr 2002. https://doi.org/10.1109/34.993558
  16. V. Vapnik, "The Nature of Statistical Learning Theory," Springer, New York, 1995.
  17. Y.H. Kim, S.J. Kim, "Movement Detection Algorithm Using Virtual Skeleton Model," Journal of Korean Institute of Intelligent Systems, Vol 18, pp. 731-736, Dec 2008. https://doi.org/10.5391/JKIIS.2008.18.6.731

피인용 문헌

  1. Motion Control of a Mobile Robot Using Natural Hand Gesture vol.24, pp.1, 2014, https://doi.org/10.5391/JKIIS.2014.24.1.064