• Title/Summary/Keyword: MHI(Motion History Image)

Search Result 14, Processing Time 0.023 seconds

Gesture Recognition using MHI Shape Information (MHI의 형태 정보를 이용한 동작 인식)

  • Kim, Sang-Kyoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.4
    • /
    • pp.1-13
    • /
    • 2011
  • In this paper, we propose a gesture recognition system to recognize motions using the shape information of MHI (Motion History Image). The system acquires MHI to provide information on motions from images with input and extracts the gradient images from such MHI for each X and Y coordinate. It extracts the shape information by applying the shape context to each gradient image and uses the extracted pattern information values as the feature values. It recognizes motions by learning and classifying the obtained feature values with a SVM (Support Vector Machine) classifier. The suggested system is able to recognize the motions for multiple people as well as to recognize the direction of movements by using the shape information of MHI. In addition, it shows a high ratio of recognition with a simple method to extract features.

Emergency Detection Method using Motion History Image for a Video-based Intelligent Security System

  • Lee, Jun;Lee, Se-Jong;Park, Jeong-Sik;Seo, Yong-Ho
    • International journal of advanced smart convergence
    • /
    • v.1 no.2
    • /
    • pp.39-42
    • /
    • 2012
  • This paper proposed a method that detects emergency situations in a video stream using MHI (Motion History Image) and template matching for a video-based intelligent security system. The proposed method creates a MHI of each human object through image processing technique such as background removing based on GMM (Gaussian Mixture Model), labeling and accumulating the foreground images, then the obtained MHI is compared with the existing MHI templates for detecting an emergency situation. To evaluate the proposed emergency detection method, a set of experiments on the dataset of video clips captured from a security camera has been conducted. And we successfully detected emergency situations using the proposed method. In addition, the implemented system also provides MMS (Multimedia Message Service) so that a security manager can deal with the emergency situation appropriately.

Motion Depth Generation Using MHI for 3D Video Conversion (3D 동영상 변환을 위한 MHI 기반 모션 깊이맵 생성)

  • Kim, Won Hoi;Gil, Jong In;Choi, Changyeol;Kim, Manbae
    • Journal of Broadcast Engineering
    • /
    • v.22 no.4
    • /
    • pp.429-437
    • /
    • 2017
  • 2D-to-3D conversion technology has been studied over past decades and integrated to commercial 3D displays and 3DTVs. Generally, depth cues extracted from a static image is used for generating a depth map followed by DIBR (Depth Image Based Rendering) for producing a stereoscopic image. Further, motion is also an important cue for depth estimation and is estimated by block-based motion estimation, optical flow and so forth. This papers proposes a new method for motion depth generation using Motion History Image (MHI) and evaluates the feasiblity of the MHI utilization. In the experiments, the proposed method was performed on eight video clips with a variety of motion classes. From a qualitative test on motion depth maps as well as the comparison of the processing time, we validated the feasibility of the proposed method.

Implementation of Game Interface using Human Head Motion Recognition (사람의 머리 모션 인식을 이용한 게임 인터페이스 구현)

  • Lee, Samual;Lee, Chang Woo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.19 no.5
    • /
    • pp.9-14
    • /
    • 2014
  • Recently, various contents using human motion are developed in computer vision and game industries. If we try to apply human motion to application programs and contents, users can experience a sense of immersion getting into it so that the users feel a high level of satisfaction from the contents. In this research, we analyze human head motion using images captured from an webcam and then we apply the result of motion recognition to a game without special devices as an interface. The proposed method, first, segments human head region using an image composed of MHI(Motion History Image) and the result of skin color detection, and then we calculate the direction and distance by the MHI sequence. In experiments, the proposed method for human head motion recognition was tested for controlling a game player. From the experimental results we proved that the proposed method can make a gammer feel more immersed into the game. Furthermore, we expect the proposed method can be an interface of a serious game for medical or rehabilitation purposes.

Recognition of Events by Human Motion for Context-aware Computing (상황인식 컴퓨팅을 위한 사람 움직임 이벤트 인식)

  • Cui, Yao-Huan;Shin, Seong-Yoon;Lee, Chang-Woo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.4
    • /
    • pp.47-57
    • /
    • 2009
  • Event detection and recognition is an active and challenging topic recent in Computer Vision. This paper describes a new method for recognizing events caused by human motion from video sequences in an office environment. The proposed approach analyzes human motions using Motion History Image (MHI) sequences, and is invariant to body shapes. types or colors of clothes and positions of target objects. The proposed method has two advantages; one is thant the proposed method is less sensitive to illumination changes comparing with the method using color information of objects of interest, and the other is scale invariance comparing with the method using a prior knowledge like appearances or shapes of objects of interest. Combined with edge detection, geometrical characteristics of the human shape in the MHI sequences are considered as the features. An advantage of the proposed method is that the event detection framework is easy to extend by inserting the descriptions of events. In addition, the proposed method is the core technology for event detection systems based on context-aware computing as well as surveillance systems based on computer vision techniques.

bat tracking in baseball broadcasting using CAMshift and Kalman filter (CAMshift와 칼만필터를 이용한 야구 중계화면에서의 배트 추적)

  • Jo, Kyeong-min;Cha, Eui-young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.695-698
    • /
    • 2015
  • In this paper proposes bat tracking in baseball broadcasting using CAMshift and Kalman filter. The bat is changing fast during the swing, the shape also continues to rotate. For this reason, to apply the CAMshift to self adjust the size of the search window in order to use the color information to the invariant of the bat. Because it uses the color information if there are objects of similar color to the background because of the interruption on the track narrows the search range in range of motion detection by using the MHI(Motion History Image). By applying a Kalman filter, limit changing on the size of the search window, and it can be obtained higher track accuracy. But, this proposed method was limited color change by light.

  • PDF

Unsupervised Motion Pattern Mining for Crowded Scenes Analysis

  • Wang, Chongjing;Zhao, Xu;Zou, Yi;Liu, Yuncai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.12
    • /
    • pp.3315-3337
    • /
    • 2012
  • Crowded scenes analysis is a challenging topic in computer vision field. How to detect diverse motion patterns in crowded scenarios from videos is the critical yet hard part of this problem. In this paper, we propose a novel approach to mining motion patterns by utilizing motion information during both long-term period and short interval simultaneously. To capture long-term motions effectively, we introduce Motion History Image (MHI) representation to access to the global perspective about the crowd motion. The combination of MHI and optical flow, which is used to get instant motion information, gives rise to discriminative spatial-temporal motion features. Benefitting from the robustness and efficiency of the novel motion representation, the following motion pattern mining is implemented in a completely unsupervised way. The motion vectors are clustered hierarchically through automatic hierarchical clustering algorithm building on the basis of graphic model. This method overcomes the instability of optical flow in dealing with time continuity in crowded scenes. The results of clustering reveal the situations of motion pattern distribution in current crowded videos. To validate the performance of the proposed approach, we conduct experimental evaluations on some challenging videos including vehicles and pedestrians. The reliable detection results demonstrate the effectiveness of our approach.

Vision-based human motion analysis for event recognition (휴먼 모션 분석을 통한 이벤트 검출 및 인식)

  • Cui, Yao-Huan;Lee, Chang-Woo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2009.01a
    • /
    • pp.219-222
    • /
    • 2009
  • 최근 컴퓨터비젼 분야에서 이벤트 검출 및 인식이 활발히 연구되고 있으며, 도전적인 주제들 중 하나이다. 이벤트 검출 기술들은 많은 감시시스템들에서 유용하고 효율적인 응용 분야이다. 본 논문에서는 사무실 환경에서 발생할 수 있는 이벤트의 검출 및 인식을 위한 방법을 제안한다. 제안된 방법에서의 이벤트는 입장( entering), 퇴장(exiting), 착석(sitting-down), 기립(standing-up)으로 구성된다. 제안된 방법은 하드웨어적인 센서를 사용하지 않고, MHI(Motion History Image) 시퀀스(sequence)를 이용한 인간의 모션 분석을 통해 이벤트를 검출할 수 있는 방법이며, 사람의 체형과 착용한 옷의 종류와 색상, 그라고 카메라로부터의 위치관계에 불변한 특성을 가진다. 에지검출 기술을 HMI 시퀀스정보와 결합하여 사람 모션의 기하학적 특징을 추출한 후, 이 정보를 이벤트 인식의 기본 특징으로 사용한다. 제안된 방법은 단순한 이벤트 검출 프레임웍을 사용하기 때문에 검출하고자 하는 이벤트의 설명만을 첨가하는 것으로 확장이 가능하다. 또한, 제안된 방법은 컴퓨터비견 기술에 기반한 많은 감시시스템에 적용이 가능하다.

  • PDF

Hand Tracking based on CamShift using Motion History Image (운동 히스토리 영상을 활용한 CamShift 기반 손 추적 기법)

  • Gil, Jong In;Kim, Mina;Whang, Whankyu;Kim, Manbae
    • Journal of Broadcast Engineering
    • /
    • v.22 no.2
    • /
    • pp.182-192
    • /
    • 2017
  • In this paper, we propose hand tracking system combined with color and motion information. Most of hand detection and tracking systems are performed by modeling skin color. However, in this approach, since it is highly influenced by light or surrounding objects, accurate values cannot be derived constantly. Also, depending on the skin color, hand tracking may be interrupted by not only the hand but also the background with a color similar to that of the face and skin. Therefore, we design the hand tracking that can effectively track a hand by using motion history image(MHI) and combining it with CamShift. The proposed system is implemented based on C/C++, and the experiments proved that the proposed method shows stable and excellent performance.

Depth Image-Based Human Action Recognition Using Convolution Neural Network and Spatio-Temporal Templates (시공간 템플릿과 컨볼루션 신경망을 사용한 깊이 영상 기반의 사람 행동 인식)

  • Eum, Hyukmin;Yoon, Changyong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.10
    • /
    • pp.1731-1737
    • /
    • 2016
  • In this paper, a method is proposed to recognize human actions as nonverbal expression; the proposed method is composed of two steps which are action representation and action recognition. First, MHI(Motion History Image) is used in the action representation step. This method includes segmentation based on depth information and generates spatio-temporal templates to describe actions. Second, CNN(Convolution Neural Network) which includes feature extraction and classification is employed in the action recognition step. It extracts convolution feature vectors and then uses a classifier to recognize actions. The recognition performance of the proposed method is demonstrated by comparing other action recognition methods in experimental results.