• Title/Summary/Keyword: 형태 문맥

Search Result 108, Processing Time 0.024 seconds

A Study on Context Environment and Model State for Robustness Acoustic Models (강건한 음향모델을 위한 모델의 상태와 문맥환경에 관한 연구)

  • 최재영;오세진;황도삼
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.05b
    • /
    • pp.366-369
    • /
    • 2003
  • 본 연구에서는 강건한 문맥의존 음향모델을 작성하기 위한 기초적인 연구로서 문맥환경과 상태수의 변화에 따른 음향모델의 성능을 고찰하고자 한다. 음성은 시간함수로 표현되며 음절, 단어, 연속음성을 발성할때 자음과 모음에 따라 발성시간에 차이가 있으며 음성인식의 최소 인식단위로 널리 사용되는 음소의 앞과 뒤에 오는 문맥환경에 따라 인식성능에 많은 차이를 보이고 있다. 따라서 본 연구에서는 시간의 변화(상태수의 변화)와 상태분할 과정에서 문맥환경의 변화를 고려하여 다양한 형태의 문맥의존 음향모델을 작성하였다. 모델학습은 음소결정트리 기반 SSS 알고리즘(Phonetic Decision Tree-based Successive State Splitting: PDT-555)을 이용하였다 PDT-SSS 알고리즘은 미지의 문맥정보를 해결하기 위해 문맥방향과 시간방향으로 목표 상태수에 도달할 때까지 상태분할을 수행하여 모델을 작성하는 방법이다. 본 연구에서 강건한 문맥의존 음향모델을 학습하기 위한 방법의 유효성을 확인하기 위해 국어공학센터의 452 단어를 대상으로 음소와 단어인식 실험을 수행하였다. 실험결과, 음성의 시간변이에 따른 모델의 상태수와 각 음소의 문맥환경에 따라 인식성능의 변화를 고찰할 수 있었다. 따라서 본 연구는 향후 음성인식 시스템의 강건한 문맥의존 음향모델을 작성하는데 유효할 것으로 기대된다.

  • PDF

The Processing and Representations of Ambiguos Morpheme in Korean Words : Centered in Aphasics. (한국어 중의적 형태소 표상양식과 처리 특성 : 실어증 환자를 중심으로)

  • 정재범;편성범;김태훈;남기춘
    • Proceedings of the Korean Society for Cognitive Science Conference
    • /
    • 2002.05a
    • /
    • pp.151-156
    • /
    • 2002
  • 중의적인 단어를 처리하는 방법에 대한 선행연구로, 첫째 문맥에 맞는 의미가 먼저 활성화된다는 가설과 둘째, 여러 뜻 중에 상대적인 빈도에 따라 많이 쓰이는 의미가 먼저 활성화되고, 그것이 문맥과 일치하지 않는다면, 다른 관련된 의미를 찾는다는 가설이 제기되었다. 마지막으로 문맥에 상관없이 모든 의미가 활성화 된 후 문맥을 고려하여 문맥에 적절한 의미를 선택한다는 가설이 있다. 본 연구에서는 '먹을', '감을' 등과 같이 2가지 의미의 품사가 다른 중의 어절과 '쥐어', '감어' 등과 같이 어절 문맥('어')이 주어진 어절의 의미 활성화가 어떻게 다른지를 조사하였다. 본 연구의 목적을 위해 점화어휘 판단 과제를 사용하였다. 실험 1의 결과는 SOA 150ms 조건에서 점화자극어절과 관련된 의미가 품사와 관련 없이 모두 활성화되었다. SOA 1000ms 조건에서는 상대적으로 많이 쓰이는 체언의 의미는 계속 활성화 되어 있는 반면, 용언의 의미 점화량은 감소하였다. 명칭성 실어증 환자인 SDK의 경우 SOA 150ms 조건에서는 일반인과 같은 형태소 처리특성을 보였으나 1000ms 조건에서는 달랐다. 다른 명칭성 실어증 환자인 BIS과 전반성 실어증 환자인 PSB는 SOA 150ms 조건과 1000ms 조건에서 일반인과 아주 다른 양상을 보였다. 이것은 실어증 환자의 타잎에 따라 형태소의 처리나 중의적인 의미 활성화가 일반인과는 다르다는 것을 보여준다. 실험 2에서는 어절 문맥이 있는 '먹어', '쥐어', '감어' 등과 같은 어절을 사용하였다. 실험 2의 결과는 SOA 150ms 조건일 때 어절문맥의 영향으로 용언의 의미만 촉진적 점화효과가 있었고, 체언의 의미는 활성화되지 않았다. 그러나 SOA 1000ms로 지연시켰을 때는 용언뿐만 아니라 체언의 의미도 촉진적 점화효과가 있었다. 실험 1과 2의 결과는 중의적인 한국어 어절의 경우에도 모든 의미가 활성화되나 어절 문맥이 존재할 때는 어절 문맥의 제약으로 어절 문맥에 맞는 한 가지 의미만 활성화된다는 것을 암시한다. 또한 이러한 결과는 한국어 어절이 분석된 형태가 아닌 어절 형태로 심성 어휘집에 저장되어 있다는 것을 암시한다. 실어증 환자의 경우 실험 1과 마찬가지로 환자의 수준이나 종류에 따라 다양한 반응을 보여주었다.

  • PDF

Identifying Optimum Features for Abbreviation Disambiguation in Biomedical Domain (생의학 도메인에서 약어 중의성 해결을 위한 최적 자질의 규명)

  • Lim, Ho-Gun;Seo, Hee-Cheol;Kim, Seon-Ho;Rim, Hae-Chang
    • Annual Conference on Human and Language Technology
    • /
    • 2004.10d
    • /
    • pp.173-180
    • /
    • 2004
  • 생의학 도메인에서 약어 중의성 해결이란 생의학 문서에 나타난 약어의 원래 형태(long form)를 판별하는 작업이다. 본 논문은 생의학 도메인에서 약어 중의성 해결에 적합한 자질들을 실험적으로 탐색하는데 목적이 있다. 이를 위해서 약어 중의성 해결에 사용할 문맥을 전역 문맥(topical context)과 지역 문맥(local context)으로 구분하고, 각각의 문맥에서 스테밍(stemming), 불용어 제거, 품사 부착 등의 과정을 통해서 다양한 자질들을 고려하도록 한다. 생의학 도메인에서 약어 중의성 해결을 위한 실험 자료의 부족을 해결하기 위해서, 학습 자료와 평가 자료를 자동으로 구축했으며, 평가를 위한 약어로는 기존 연구에서 사용된 두 가지 약어 목록을 사용했다. 또한 단순 베이지언 모델(Naive Bayesian Model)을 이용해서 각 자질들의 유용성을 평가하였다 실험 결과, 전역 문맥이 지역 문맥보다 더 좋은 성능을 보였으며, 전역 문맥에서는 불용어만을 제거한 경우가 각각의 평가 자료에서 94.2%와 96.2%로 가장 좋은 결과를 보였으며, 전역 문맥과 지역 문맥을 함께 사용하는 경우에 각각의 평가 자료에서 1.8%와 0.3%의 성능 향상이 있었다.

  • PDF

An Approach for Designing Self-Adaptive Software based on Context Information (상황정보 기반 자기적응형 소프트웨어 설계 방법)

  • Hwang, Seong-Jin;Park, Joon-Seok;Moon, Mi-Kyeong;Yeom, Keun-Hyuk
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.10c
    • /
    • pp.354-359
    • /
    • 2006
  • 최근 유비쿼터스 컴퓨팅 환경의 실현 가능성이 높아지면서 동적으로 변화하는 외부 환경에서의 소프트웨어 역할이 중요해지고 있다. 유비쿼터스 환경의 소프트웨어는 다양한 센서로부터 입력되는 문맥정보를 분석하고 그 결과에 따라 적절하게 서비스를 제공할 수 있는 자기적응형(self-adaptive) 소프트웨어 형태가 되어야 한다. 이러한 특징을 가진 소프트웨어를 개발하기 위해서는 문맥정보에 대한 정적분석 활동과 문맥 변화에 상호 작용하는 동적분석 활동이 개발 전 과정에 걸쳐 체계적으로 수행되어야 한다. 본 연구에서는 외부 환경의 문맥정보에 가변적으로 반응하는 자기적응형 소프트웨어의 요구사항을 분석하고, 문맥정보 조건에 따라 재구성 가능한 컴포넌트 기반 아키텍처를 설계하기 위한 자기적응형 소프트웨어 설계 방법을 제시한다. 또한 본 연구의 방법을 적용하여 설계한 스마트 홈 시스템에 대한 사례연구를 소개한다.

  • PDF

Word Sense Disambiguation Using of Cooccurrence Information Vectors (공기정보 벡터를 이용한 한국어 명사의 의미구분)

  • Shin, Sa-Im;Lee, Ju-Ho;Choi, Yong-Seok;Choi, Key-Sun
    • Annual Conference on Human and Language Technology
    • /
    • 2001.10d
    • /
    • pp.472-478
    • /
    • 2001
  • 본 논문은 문맥의 공기정보를 사용한 한국어 명사의 의미구분에 관한 연구이다. 대상 명사에 대한 문맥의 지엽적인 단어분포는 명사의 의미구분을 위한 의미적 특성을 표현하는데 충분하지 못하다. 본 논문은 의미별로 수집한 문맥 정보를 기저 벡터화 하는 방법을 제안한다. 정보의 중요도 측정을 통하여 의미구분에 불필요한 문맥정보는 제거하고, 남아있는 문맥의 단어들은 변별력 강화를 위하여 상의어 정보로 바꾸어 기저벡터에 사용한다. 상의어 정보는 단어의 형태와 사전 정의문의 패턴을 통해 추출한다. 의미 벡터를 통한 의미구분에 실패하였을 경우엔 훈련데이터에서 가장 많이 나타난 의미로 정답을 제시한다. 실험을 위해 본 논문에서는 SENSEVAL 실험집합을 사용하였으며, 제시한 방법으로 공기정보의 가공 없이 그대로 실험한 방법과 비교하여 최고 42% 정도의 정확률 향상을 나타내었다.

  • PDF

Word sense disambiguation using dynamic sized context and distance weighting (가변 크기 문맥과 거리가중치를 이용한 동형이의어 중의성 해소)

  • Lee, Hyun Ah
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.4
    • /
    • pp.444-450
    • /
    • 2014
  • Most researches on word sense disambiguation have used static sized context regardless of sentence patterns. This paper proposes to use dynamic sized context considering sentence patterns and distance between words for word sense disambiguation. We evaluated our system 12 words in 32,735sentences with Sejong POS and sense tagged corpus, and dynamic sized context showed 92.2% average accuracy for predicates, which is better than accuracy of static sized context.

Korean Noun Phrase Identification Using Maximum Entropy Method (최대 엔트로피 모델을 이용한 한국어 명사구 추출)

  • 강인호;전수영;김길창
    • Proceedings of the Korean Society for Cognitive Science Conference
    • /
    • 2000.06a
    • /
    • pp.127-132
    • /
    • 2000
  • 본 논문에서는 격조사의 구문적인 특성을 이용하여, 수식어까지 포함한 명사구 추출 방법을 연구한다. 명사구 판정을 위해 연속적인 형태소열을 문맥정보로 사용하던 기존의 방법과 달리, 명사구의 처음과 끝 그리고 명사구 주변의 형태소를 이용하여 명사구의 수식 부분과 중심 명사를 문맥정보로 사용한다. 다양한 형태의 문맥 정보들은 최대 엔트로피 원리(Maximum Entropy Principle)에 의해 하나의 확률 분포로 결합된다. 본 논문에서 제안하는 명사구 추출 방법은 먼저 구문 트리 태깅된 코퍼스에서 품사열로 표현되는 명사구 문법 규칙을 얻어낸다. 이렇게 얻어낸 명사구 규칙을 이용하여 격조사와 인접한 명사구 후보들을 추출한다. 추출된 각 명사구 후보는 학습 코퍼스에서 얻어낸 확률 분포에 기반하여 명사구로 해석될 확률값을 부여받는다. 이 중 제일 확률값이 높은 것을 선택하는 형태로 각 격조사와 관계있는 명사구를 추출한다. 본 연구에서 제시하는 모델로 시험을 한 결과 평균 4.5개의 구를 포함하는 명사구를 추출할 수 있었다.

  • PDF

Morphological disambiguation using Local Context (국소 문맥을 이용한 형태적 중의성 해소)

  • 이충희;윤준태;송만석
    • Proceedings of the Korean Society for Cognitive Science Conference
    • /
    • 2000.06a
    • /
    • pp.48-55
    • /
    • 2000
  • 본 논문은 국소문맥을 사용하여 만들어진 Decision List를 통해 단어의 형태적 중의성을 제거하는 방법을 기술한다. 최초 종자 연어(Seed Collocation)로 1차 Decision List를 만들어 실험 말뭉치에 적용하고 태깅된 결과를 자가 학습하는 반복과정에 의해 Decision List의 수행능력을 향상시킨다. 이 방법은 단어의 형태적 중의성 제거에 일정 거리의 연어가 가장 큰 영향을 끼친다는 직관에 바탕을 두며 사람의 추가적인 교정을 필요로 하지 않는 비교사 방식(대량의 원시 말뭉치에 기반한)에 의해 수행한다. 학습을 통해 얻어진 Decision List는 연세대 형태소 분석기인 MORANY의 형태소 분석 결과에 적용되어 태깅시 성능을 향상시킨다. 실험 말뭉치에 있는 중의성을 가진 12개의 단어들에 본 알고리즘을 적용하여 긍정적인 결과(90.61%)를 얻었다. 은닉 마르코프 모델의 바이그램(bigram) 모델과 비교하기 위하여 '들었다' 동사만을 가지고 실험하였는데 바이그램 모델의 태깅결과(72.61%)보다 뛰어난 결과(94.25%)를 얻어서 본 모델이 형태적 중의성 해소에 유용함을 확인하였다.

  • PDF

Morphological disambiguation using Local Context (국소 문맥을 이용한 형태적 중의성 해소)

  • Lee, Chung-Hee;Yoon, Jun-Tae;Song, Man-Suk
    • Annual Conference on Human and Language Technology
    • /
    • 2000.10d
    • /
    • pp.48-55
    • /
    • 2000
  • 본 논문은 국소문맥을 사용하여 만들어진 Decision List를 통해 단어의 형태적 중의성을 제거하는 방법을 기술한다. 최초 종자 연어(Seed Collocation)로 1차 Decision List를 만들어 실험 말뭉치에 적용하고 태깅된 결과를 자가 학습하는 반복과정에 의해 Decision List의 수행능력을 향상시킨다. 이 방법은 단어의 형태적 중의성 제거에 일정 거리의 연어가 가장 큰 영향을 끼친다는 직관에 바탕을 두며 사람의 추가적인 교정을 필요로 하지 않는 비교사 방식(대량의 원시 말뭉치에 기반한)에 의해 수행한다. 학습을 통해 얻어진 Decision List는 연세대 형태소 분석기인 MORANY의 형태소 분석 결과에 적용되어 태깅시 성능을 향상시킨다. 실험 말뭉치에 있는 중의성을 가진 12개의 단어들에 본 알고리즘을 적용하여 긍정적인 결과(90.61%)를 얻었다. 은닉 마르코프 모델의 바이그램(bigram) 모델과 비교하기 위하여 '들었다' 동사만을 가지고 실험하였는데 바이그램 모델의 태깅결과(72.61%)보다 뛰어난 결과 (94.25%)를 얻어서 본 모델이 형태적 중의성 해소에 유용함을 확인하였다.

  • PDF

Hybrid Part-of-Speech Tagging using Context Information among Words (어절간 문맥 정보를 이용한 혼합형 품사 태깅)

  • Lim, Hee-Dong;Seo, Young-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2000.10d
    • /
    • pp.376-380
    • /
    • 2000
  • 본 논문에서는 규칙 정보와 통계 정보의 상호 보완적 특성을 이용한 혼합형 방법을 기반으로 규칙 정보와 통계 정보의 추출 및 적용 시에 어절간 문맥 정보를 보다 효율적으로 이용하는 혼합형 품사 태깅 시스템을 제안한다. 먼저 규칙이 적용되는 중의성들에 대해서 높은 정확률로 태깅을 수행한 후, 규칙으로 해결할 수 없는 중의성들에 대해서는 통계 정보를 이용하여 태깅을 수행한다. 규칙 정보는 중의성을 갖는 어절과 주변 어절들의 형태소 및 태그를 이용하여 정의하고 통계 정보는 문맥에 영향을 많이 미치고 많은 중의성의 원인이 되는 조사와 어미의 형태를 그대로 활용하여 추출함으로써 어절간 문맥을 보다 효율적으로 이용한다.

  • PDF