DOI QR코드

DOI QR Code

Effect of Different Cultivation Systems on Soil Glomalin Content and Nutrient Uptake of Strawberry in Controlled Horticultural Land

시설 딸기 재배형태가 토양 글로말린 함량과 양분흡수량에 미치는 영향

  • Min, Se-Gyu (Goseong-Gun Agricultural Development Technology Center) ;
  • Lee, Seung-Ho (Goseong-Gun Agricultural Development Technology Center) ;
  • Nam, Sang-Hoe (Goseong-Gun Agricultural Development Technology Center) ;
  • Choi, Yong-Uk (Goseong-Gun Agricultural Development Technology Center) ;
  • Lee, Su-Yeol (Goseong-Gun Agricultural Development Technology Center) ;
  • Park, Su-Seon (Rural Development Administration) ;
  • Lee, Seong-Tae (Gyeongsangnam-do Agricultural Research and Extension Services) ;
  • Kim, Eon-Seok (Gyeongsangnam-do Agricultural Research and Extension Services) ;
  • Song, Won-Doo (Gyeongsangnam-do Agricultural Research and Extension Services) ;
  • Lee, Young-Han (Gyeongsangnam-do Agricultural Research and Extension Services)
  • Received : 2011.05.12
  • Accepted : 2011.06.10
  • Published : 2011.06.30

Abstract

Glomalin has important roles in soil aggregation in agricultural lands including controlled horticultural lands. The objective of this study was to measure total glomalin content of soils treated conventional farming system (CFS), conventional farming system without pesticides (CFSWP), and organic farming system (OFS) for strawberry cultivation under greenhouse in Goseong-gun, Korea. The average concentration of total glomalin in the soils was significantly higher in the OFS ($2.00mg\;g^{-1}$) compared to the CFS ($1.68mg\;g^{-1}$). In addition, soil microbial biomass C content was 4.9 times higher in the OFS ($821mg\;kg^{-1}$) compared to the CFS ($169mg\;kg^{-1}$). Nitrogen uptake rate of strawberry was higher in the OFS (52.4%) than that in the CFS (13.0%). Furthermore, yield of strawberry in OFS ($51Mg\;ha^{-1}$) was significantly higher compared to CFS ($35Mg\;ha^{-1}$).

시설 딸기 유기재배, 무농약 및 관행재배 재배방법이 토양의 글로말린 함량 및 미생물생체량과 식물체 양분흡수에 미치는 영향을 검토하였다. 토양 총 글로말린 함량은 유기재배 $2.00mg\;g^{-1}$, 무농약재배 $1.93mg\;g^{-1}$이었으며 관행 재배는 $1.68mg\;g^{-1}$으로 유기재배에 비해 유의적으로 낮았다 (p<0.05). 토양 미생물생체량은 유기재배가 $821mg\;kg^{-1}$ 으로 무농약재배 $216mg\;kg^{-1}$ 및 관행재배 $169mg\;kg^{-1}$에 비해 유의적으로 높았다 (p<0.05). 딸기 지상부의 질소 흡수량은 유기재배가 $65kg\;ha^{-1}$로 가장 많아 질소 이용율이 52.4%로 가장 높았다 (p<0.05). 딸기 수량은 유기재배가 $51Mg\;ha^{-1}$으로 가장 많았으며 관행재배가 $35Mg\;ha^{-1}$이었고 무농약재배는 $32Mg\;ha^{-1}$이었다.

Keywords

References

  1. Altieri, M.A. 2002. Agroecology: the sceience of natural resource managemen for poor farmers in marginal environments. Agr. Ecosyst. Environ. 93:1-24 https://doi.org/10.1016/S0167-8809(02)00085-3
  2. Jastrow, J.D. 1996. Soil aggregate formation and the accrual of particulate and mineral-associated organic matter. Soil Biol. Biochem. 28:665-676. https://doi.org/10.1016/0038-0717(95)00159-X
  3. Jeon, W.T., K.Y. Seong, M.T. Kim, G.J. Oh, I.S. Oh, and U.G. Kang. 2010. Changes of soil physical properties by glomalin concentration and rice yield using different green manure crops in paddy. Korean J. Soil Sci. Fert. 43:119-123.
  4. Johnson, C.K., B.J. Wienhold, J.W. Doran, R.A. Drijber, and S.F. Wright. 2004. Linking microbial-scale findings to farmscale outcomes in a dryland cropping system. Precis. Agric. 5:311-328. https://doi.org/10.1023/B:PRAG.0000040803.35346.b2
  5. Johnson, C.K., J.W. Doran, H.R. Duke, B.J. Wienhold, K.M. Eskridge, and J.F. Shanahan. 2001. Field-scale electrical conductivity mapping for delineating soil condition. Soil Sci. Soc. Am. J. 65:1829-1837. https://doi.org/10.2136/sssaj2001.1829
  6. Lee, Y.H., B.K. Ahn, and J.H. Lee. 2010. Effects of rice straw application and green manuring on selected soil physical properties and microbial biomass carbon in no-till paddy field. Korean J. Soil Sci. Fert. 43:105-112.
  7. Lee, Y.S., J.H. Kang, K.J. Choi, S.T. Lee, E.S. Kim, W.D. Song, and Y.H. Lee. 2011. Response of soil microbial communities to different cultivation systems in controlled horticultural land. Korean J. Soil Sci. Fert. 44:118-126. https://doi.org/10.7745/KJSSF.2011.44.1.118
  8. Mac Rae, R.Y. and G.R. Mehuys. 1985. The effect of green manuring on the physical properties of temperate area soils. Adv. Soil Sci., Vol. 3. Springer-Verlag, Inc., NY, pp71-94. https://doi.org/10.1007/978-1-4612-5090-6_2
  9. Mader, P., A. FlieBbach, D. Dubois, L. Gunst, P. Fried, and U. Niggli. 2002. Soil fertility and biodiversity in organic farming. Science 296:1694-1697. https://doi.org/10.1126/science.1071148
  10. Miller, R.M. and J.D. Jastrow. 1990. Hierarchy of root and mycorrhizal mycorrhizal fungal interactions with soil aggregation. Soil Biol. Biochem. 22:579-584. https://doi.org/10.1016/0038-0717(90)90001-G
  11. NIAST. 2000. Methods of analysis of soil and plant. National Institute of Agricultural Science and Technology, Suwon, Korea (In Korean).
  12. Oehl, F., E. Sieverding, K. Ineichen, P. Mader, T. Boller, and A. Wiemken. 2003. Impact of land use intensity on the species diversity of arbuscular mycorrhizal fungi in agroecosystems of central europe. Appl. Environ. Microbiol. 5:2816-2824.
  13. RDA. 2003. Standard of agricultural research. National Institute of Agricultural Science and Technology, RDA, Suwon. Korea (In Korean).
  14. Rillig, M.C. 2004. Arbuscular mycorrhizae, glomalin, and soil aggregation. Can. J. Soil Sci. 84:355-363. https://doi.org/10.4141/S04-003
  15. Rilling, M.C., E.R. Lutgen, P.W. Ramsey, J.N. Klironomos, and J.E. Gannon. 2005. Microbiota accompanying different arbuscular mycorrhizal fungal isolates influence soil aggregation. Pedobiologis 49:251-259. https://doi.org/10.1016/j.pedobi.2004.11.003
  16. Rillig, M.C., P.W. Ramsey, S. Morris, and E.A. Paul. 2003. Glomalin, an arbuscular-mycorrhizal fungal soil protein, responds to land-use change. Plant Soil 253:293-299. https://doi.org/10.1023/A:1024807820579
  17. SAS. 2006. SAS enterprise guide Version 4.1. SAS Inst., Cary, NC.
  18. Six, J., E.T. Elliott, and K. Paustian. 2000. Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biol. Biochem. 32:2099-2103. https://doi.org/10.1016/S0038-0717(00)00179-6
  19. Torjusen, H., G. Lieblein, M. Wandel, and C.A. Francis. 2001. Food system orientation and quality among consumers and producers of organic food in Hedma country, Norway. Food Qual. Prefer. 12:207-216. https://doi.org/10.1016/S0950-3293(00)00047-1
  20. Vance, E.D., P.C. Brookes, and D.S. Jenkinson. 1987. An extraction method for measuring soil microbial biomass carbon. Soil Biol. Biochem. 19:703-707. https://doi.org/10.1016/0038-0717(87)90052-6
  21. Wright, S.F. and A. Upadhyaya. 1998. A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant Soil 198:97-107. https://doi.org/10.1023/A:1004347701584
  22. Wright, S.F. and R.L. Anderson. 2000. Aggregate stability and glomalin in alternative crop rotations for the central Great Plains. Biol. Fertil. Soils 31:249-253. https://doi.org/10.1007/s003740050653
  23. Wright, S.F., J.L. Starr, and I.C. Paltineanu. 1999. Changes in aggregate stability and concentration of glomalin during tillage management transition. Soil Sci. Soc. Am. J. 63: 1825-1829. https://doi.org/10.2136/sssaj1999.6361825x
  24. Wright, S.F., K.A. Nichols, and W.F. Schmidt. 2006. Comparison of efficacy of three extractants to solubilize glomalin on hyphae and in soil. Chemosphere 64:1219-1224. https://doi.org/10.1016/j.chemosphere.2005.11.041
  25. Wright, S.F., M. Franke-Snyder, J.B. Morton, and A. Upadhyaya. 1996. Time-course study and partial characterization of a protein on hyphae of arbuscular mycorrhizal fungi during active colonization of roots. Plant Soil 181:193-203. https://doi.org/10.1007/BF00012053
  26. Wright, S.F., V.S. Green, and M.A. Cavigelli. 2007. Glomalin in aggregate size classes from three different farming systems. Soil Till. Res. 94:546-549. https://doi.org/10.1016/j.still.2006.08.003

Cited by

  1. Characteristics of Fertility of Cucumber Cultivated Soils at Controlled Horticulture in Chungnam Province vol.47, pp.4, 2014, https://doi.org/10.7745/KJSSF.2014.47.4.262
  2. The Relationship between Microbial Characteristics and Glomalin Concentrations of Controlled Horticultural Soils in Gyeongnam Province vol.47, pp.2, 2014, https://doi.org/10.7745/KJSSF.2014.47.2.107