DOI QR코드

DOI QR Code

Effects of the Application of Livestock Manure Compost on Reducing the Chemical Fertilizer Use for the Lettuce Cultivation in Green House

시설상추 재배시 축분퇴비 이용에 따른 화학비료 절감효과 평가

  • Received : 2011.05.19
  • Accepted : 2011.06.17
  • Published : 2011.06.30

Abstract

Livestock manure compost (LC) generally contains high content of phosphorus, therefore can be a substitute for phosphorus fertilizers. In this experiment of the cultivation of lettuce in green house, the possibility of LC as a subsitute for phosphorus fertilizer was investigated and the fertilizer efficiency of nitrogen and potassium in LC as compared with chemical N fertilizer (urea) and K fertilizer (potassium chloride) was examined. In proportion to the increase in the application rate of nitrogen fertilizer, soil pH declined, whereas EC and $NO_3$-N content became higher. The application of LC appeared to increase the soil content of organic matter, available phosphate, exchangeable calcium, magnesium and sodium more than that of chemical fertilizer. Supplementation of the K fertilizer by the lack amount from the application of LC resulted in the same exchangeable potassium content in soil with NPK plot in which N, P and K fertilizers were applied by the amount of soil test recommendation. The relationship between soil $NO_3$-N content and nitrogen application rate from fertilizer and compost showed as y=0.57717a+0.19760b+74.65 ($R^2$=0.6347) in which y is the soil $NO_3$-N content (mg $kg^{-1}$), a is nitrogen application rate from fertilizer and b is nitrogen application rate from compost (kg $ha^{-1}$), respectively. From this equation, the supply ability of $NO_3$-N into soil of LC exhibited about 34% (pig manure compost 37.0, chicken manure compost 34.7, cattle manure compost 23.3) of nitrogen fertilizer (urea).

본 시험은 우분, 돈분, 계분 등 축종별로 가축분퇴비를 인산비료 대체를 위해 토양검정 인산시비 해당량을 시용하고 질소와 칼리 부족량만 화학비료로 보충하는 축분퇴비와 화학비료 혼용 시비처방 기준을 개발하고자 '08~'10년의 3개 년간 시설상추를 대상으로 실시하였다. 토양 pH는 축분퇴비 단용구가 가장 높았고, 질소시비량이 증가할수록 낮아지는 경향이었다. OM은 모든 퇴비시용구에서 유의적으로 높아졌으며 $NO_3$-N는 NPK 처리구에 비해 LC+N100 처리구가 높은 경향이었으며, Av. $P_2O_5$는 축분퇴비 시용구가 동일량의 인산 비료를 투입한 NPK 처리구에 비해 약 $20mg\;kg^{-1}$ 높았다. 치환성 칼리는 화학비료 처리구와 K 부족량이 보충시비 된 축분퇴비 처리구가 같은 수준이었다. 칼슘과 마그네슘, 나트륨 등은 퇴비 처리구가 NPK 처리구에 비해 높은 경향이었다. 축분퇴비 질소의 토양 $NO_3$-N 공급능은 요소비료에 비해 돈분, 계분, 우분퇴비 각각 37, 35, 23% (퇴비 종합 34%) 수준으로서 축분퇴비 시용시 화학비료 질소 절감 가능량으로 추정하였다. 상추 엽중 $NO_3$ 함량은 화학비료 질소시용량에 비례하여 유의적으로 증가하였고 상추의 양분흡수량은 상추수량과 같은 경향으로서 PK 및 LC+N0 처리구가 가장 낮고 질소비료 시용량에 비례하여 증가하는 경향이었다. 이상의 결과를 종합하여 시설상추 재배시 축분퇴비를 인산 토양 검정시비 해당량을 시용하여 인산질비료를 100% 대체한 후 질소비료는 "질소적정시비량 = 토양검정 질소시비량 - (축분퇴비 질소시용량 ${\times}$ 0.34)", 칼리비료는 "칼리적정시비량 = 토양검정 칼리시비량 - 축분퇴비 칼리시용량" 식에 의해 산출하여 3요소 시비량을 결정하는 방법을 도출하여 축분퇴비 및 화학비료 양분 종합이용기술의 일례로 제시하였다.

Keywords

References

  1. Commission of the European Communities Scientific Committee for Food. 1992. Report of the Scientific Committee for Food on Nitrate and Nitrite. 26th Series. EC, Brussels, Belgium.
  2. Jin, S.J., H.J. Cho, and J.B. Chung. 2004. Effect of soil salinity on nitrate accumulation of lettuce. Korean J. Soil Sci. Fert. 37(2):91-96.
  3. Kang, C.S. and A.S. Roh. 2011. Quality characteristics of livestock manure composts commercially produced in Gyeonggi province in 2008. Korean J. Soil Sci. Fert. 44(2): 293-296. https://doi.org/10.7745/KJSSF.2011.44.2.293
  4. KFIA (Korean Fertilizer Industry Association). 2010. A fertilizer yearbook. p. 13.
  5. Kim, H.J., J.H. Ryu, M.S. Park, and D.Y. Chung. 2011. Underappreciated resources phosphate: Implication in agronomy. Korean J. Soil Sci. Fert. 44(1):78-83. https://doi.org/10.7745/KJSSF.2011.44.1.078
  6. Lim, S.S., S.M. Lee, S.H. Lee, and W.J. Choi. 2010. Dry matter yield and nutrients uptake of Sorghum ${\times}$ Sudangass hybrid grown with different rates of livestock manure compost. Korean J. Soil Sci. Fert. 43(4):458-465.
  7. Magid, J. and L.S. Jensen. 2002. The production and use of animal manures. p. 16-36. In L.S. Jensen (ed.). Plant Nutrition, Soil Fertility Fertilizers and Fertilization (4th ed.) The Royal Veterinary & Agricultural University, Copenhagen.
  8. Miller, R.W. and R.L. Donahue. 1990. Soils-an introduction to soils and plant growth (6th ed.). p. 257. Prentice-Hall Inc. New Jersey, USA.
  9. Miyajaki, A. 1977. Nitrate problems in food. Stud. Food Hyg. 27:45-58.
  10. NIAST (National Institute of Agricultural Science and Technology). 2000. Analytical methods of soil and plant. NIAST, RDA, Suwon, Korea.
  11. NIAST. 2006. Fertilizer recommendation for crops. NIAST, RDA, Suwon, Koera.
  12. Park, C.S. 1999. The compost believed as the tonic medicine of the agricultural soil may also the hemlock if used excessively. Korean J. Soil Sci. Fert. 32(1):90-94
  13. Schjorring J.K. 2002. Fundamental relations between mineral nutrition and yield response. p. 4-11. In L.S. Jensen (ed.). Plant Nutrition, Soil Fertility Fertilizers and Fertilization (4th ed.) The Royal Veterinary & Agricultural University, Copenhagen.
  14. Sohn S.M., D.H. Han, and Y.H. Kim. 1996. Chemical characteristics of soils cultivated by the conventional farming, greenhouse cultivation and organic farming and accumulation of $NO^{-}_{3}$ in Chinese cabbage and lettuce. Korean J. Org. Agri. 5:149-165.
  15. Song, Y.S., H.K. Kwak, B.K. Hyun, B.Y. Yeon, and P.J. Kim. 2001. Effects of composted pig manure on rice cultivation in paddy soils of different texture. Korean J. Soil Sci. Fert. 34(4):265-272
  16. Sorensen, P., E.S. Jensen, and N.E. Nielsen. 1994. The fate of $^{15}N$ labelled organic nitrogen in sheep manure applied to soils of different texture under field conditions. Plant and Soil 162:39-47. https://doi.org/10.1007/BF01416088
  17. Tan, K.H. 1993. Principles of soil chemistry (2nd ed.). p. 264. Marcel Dekker Inc., New York, USA.
  18. Tisdale S.L., W.L. Nelson, and J.D. Beaton. 1985. Soil fertility and fertilizers (4th ed.). p. 127. Macmillan Publishing Co., New York, USA.
  19. USDA, NRCS. 2004. Soil survey laboratory methods manual. Soil survey investigation report No. 42. Version 4.0. USDA, NRCS, Washington.
  20. Walker, R. 1990. Nitrates, nitrites and N-nitroso compounds: A review of the occurrence in food and diet and the toxicological implications. Food Addit. Contam. 7:718-768.
  21. Wolff, I.A. and A.E. Wasseman. 1972. Nitrate, nitrite, and nitrosoamines. Science 177:15-19. https://doi.org/10.1126/science.177.4043.15
  22. Won, K.P., N.K. Kim, Y.S. Sho, S.Y. Chung, H.K. Yun, K.J. Ryu, Y.M. Jeon, E.Y. Kim, and M.I. Chang. 1997. Nitrate contents of some vegetables grown in Korea. The Annual Report of KFDA, Vol.1:50-56.
  23. Yoon, J.H., B.G. Jung, B.G. Park, and C.W. Shin. 1990. Proposal of prediction model for accumulation and decline of available phosphorus soil with long-term application of fertilizer phosphorus. Research Report (S & F) 32(3):46-51.

Cited by

  1. The Properties of Livestock Waste Composts Tea Depending on Manufacturing Method and Their Effect on Chinese Cabbage Cultivation vol.48, pp.1, 2015, https://doi.org/10.7745/KJSSF.2015.48.1.008
  2. Effect of Soil Salinity on Nitrogen Mineralization of Livestock Manure Compost in Salt-Affected Coastal Soils vol.47, pp.3, 2014, https://doi.org/10.7745/KJSSF.2014.47.3.199
  3. Fertilization Efficiency of Livestock Manure Composts as Compared to Chemical Fertilizers for Paddy Rice Cultivation vol.45, pp.1, 2012, https://doi.org/10.7745/KJSSF.2012.45.1.086
  4. Runoff Characteristics of Total-N and Total-P in Upland Surface Runoff Treated with Livestock Manure Compost vol.54, pp.6, 2012, https://doi.org/10.5389/KSAE.2012.54.6.029
  5. Comparison of Livestock Manure Compost and Chemical Fertilizer Application in Distribution of P Fractions at Reclaimed Land Soils vol.49, pp.4, 2016, https://doi.org/10.7745/KJSSF.2016.49.4.327
  6. Runoff Characteristics in Paddy Field using Cow Manure Compost Fertilizer vol.54, pp.3, 2012, https://doi.org/10.5389/KSAE.2012.54.3.029