DOI QR코드

DOI QR Code

이변량 가우시안 Q-함수의 Craig 표현에 대한 기하학적인 유도

A Geometric Derivation of the Craig Representation for the Two-Dimensional Gaussian Q-Function

  • 박승근 (한국전자통신연구원 전자파환경연구팀) ;
  • 이일규 (공주대학교 전기전자제어공학부)
  • 투고 : 2010.11.12
  • 심사 : 2011.02.08
  • 발행 : 2011.04.30

초록

본 논문에서는 기하학적인 관점으로 이변량 가우시안 Q-함수의 Craig 표현에 대한 새롭고 간단한 유도를 제시하고 있다. 또한, 이러한 기하학적인 유도는 이변량 가우시안 Q-함수의 또 다른 Craig 표현 식을 제시하고 있다. 새롭게 유도된 이변량 가우시안 Q-함수의 Craig 식은 2개의 상관 가우시안 잡음에서 직교좌표의 변환으로 생성되는 2개 웨지 영역의 기하학으로부터 새롭게 구한 것이다. 제시된 Craig 형태는 이변량 가우시안 Q-함수로 표현되는 확률을 계산하는데, 중요한 역할을 할 수 있다.

In this paper, we present a new and simple derivation of the Craig representation for the two-dimensional (2-D) Gaussian Q-function in the viewpoint of geometry. The geometric derivation also leads to an alternative Craig form for the 2-D Gaussian Q-function. The derived Craig form is newly obtained from the geometry of two wedge-shaped regions generated by the rotation of Cartesian coordinates over two correlated Gaussian noises. The presented Craig form can play a important role in computing the probability represented by the 2-D Gaussian Q-function.

키워드

참고문헌

  1. J. W. Craig, "A new, simple, and exact result for calculating the probability of error for two-dimensional signal constellations", Proc. of IEEE MILCOM, Oct. 1991, pp.571-575.
  2. M. K. Simon and M. -S. Alouini, "A unified approach to the performance analysis of digital communications over generalized fading channels", Proc. IEEE, Vol.86, No.9, pp.1860-1877, Sep. 1998. https://doi.org/10.1109/5.705532
  3. M. K. Simon and M. -S. Alouini, "Digital Communication over Fading Channels", A Unified Approach to Performance Analysis, New York. Wiley, Aug. 2000.
  4. K. V. Lever, "New derivation of Craig's formula for the Gaussian probability function", Electronics Letters, Vol.34, No.19, p.1821, Sep. 1998. https://doi.org/10.1049/el:19981309
  5. C. Tellambura and A. Annamalai, "Derivation of Craig's formula for Gaussian probability function", Electronics Letters, Vol.35, No.17, pp.1424-1425, Aug. 1999. https://doi.org/10.1049/el:19990949
  6. S. Park and S. H. Cho, "SEP performance of coherent MPSK over fading channels in the presence of phase/quadrature error and I-Q gain mismatch", IEEE Trans. on Commun., Vol.53, No.7, pp.1088-1091, Jul. 2005. https://doi.org/10.1109/TCOMM.2005.851608
  7. J. Park, S. Park, and K. R. Cho, "Performance analysis of symbol error probability for MPSK with an I-Q unbalance over a Rician fading channel", IEICE Trans. Commun., Vol.E88-B, No.4, pp.1702-1704, Apr. 2005. https://doi.org/10.1093/ietcom/e88-b.4.1702
  8. J. Park and S. Park, "Approximation for the two-dimensional Gaussian Q-function with its application", accepted in ETRI Journal, Feb. 2010.
  9. M. K. Simon, "A simpler form of the Craig representation for the two-dimensional joint Gaussian Q-function", IEEE Commun. Let., Vol.6, No.2, pp.49-51, Feb. 2002. https://doi.org/10.1109/4234.984687
  10. S. Park and U. J. Choi, "A generic Craig form for the two-dimensional Gaussian Q-function", ETRI Journal, Vol 29, No.4, Aug. 2007.
  11. M. Abramowiz and I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, New York:Dover, 1972.
  12. S. Park B. Kang, and D. Park, "An Extended Pawula F-function for MPSK signal vector perturbed by correlated two-dimensional Gaussian noise", IEICE Trans. Commun., Vol. E89-B, No.11, pp.3104-3107, Nov. 2006. https://doi.org/10.1093/ietcom/e89-b.11.3104