Investigation on Inhibitory Effect of ErmSF N-Terminal End Region Peptide on ErmSF Methyltansferase Activity In Vivo Through Development of Co-Expression System of Two Different Proteins in One Cell

서로 다른 두 단백질의 세포 내 동시 발현 체계의 개발을 통한 ErmSF에서 특이적으로 발견되는 N-Terminal End Region (NTER)을 포함하는 펩타이드의 생체내에서의 ErmSF 활성 억제 효과 검색

  • Jin, Hyung-Jong (Department of Bioscience and Biotechnology, College of Natural Science, The University of Suwon)
  • 진형종 (수원대학교 자연과학대학 생명공학과)
  • Received : 2011.08.22
  • Accepted : 2011.09.15
  • Published : 2011.09.30

Abstract

Most problematic antibiotic resistance mechanism for MLS (macrolide-lincosamide-streptogramn B) antibiotics encountered in clinical practice is mono- or dimethylation of specific adenine residue at 2058 (E. coli coordinate) of 23S rRNA which is performed by Erm (erythromycin ribosome resistance) protein through which bacterial ribosomes reduce the affinity to the antibiotics and become resistant to them. ErmSF is one of the four gene products produced by Streptomyces fradiae to be resistant to its own antibiotic, tylosin. Unlike other Erm proteins, ErmSF harbors idiosyncratic long N-terminal end region (NTER) 25% of which is comprised of arginine well known to interact with RNA. Furthermore, NTER was found to be important because when it was truncated, most of the enzyme activity was lost. Based on these facts, capability of NTER peptide to inhibit the enzymatic activity of ErmSF was sought. For this, expression system for two different proteins to be expressed in one cell was developed. In this system, two plasmids, pET23b and pACYC184 have unique replication origins to be compatible with each other in a cell. And expression system harboring promoter, ribosome binding site and transcription termination signal is identical but disparate amount of protein could be expressed according to the copy number of each vector, 15 for pACYC and 40 for pET23b. Expression of NTER peptide in pET23b together with ErmSF in pACYC 184 in E. coli successfully gave more amounts of NTER than ErmSF but no inhibitory effects were observed suggesting that there should be dynamicity in interaction between ErmSF and rRNA rather than simple and fixed binding to each other in methylation of 23S rRNA by ErmSF.

임상에서 가장 문제가 되는 MLS (macrolide-lincosamidestreptogramin B) 항생제 내성은 Erm 단백질에 의하여 23S rRNA의 A2058에 dimethylation시킴으로써 MLS 항생제의 부착능을 저해함으로써 나타내는 내성이다. ErmSF는 다른 Erm 단백질과 달리 매우 긴 N-terminal end region (NTER)을 가지고 있으며 RNA에 잘 부착되는 것으로 알려진 arginine이 25%를 차지하고 있다. 특히 NTER의 점차적인 제거는 이에 따른 점차적인 활성의 감소 그리고 이의 완전한 제거는 98%의 활성소실을 가져다 주는 것으로 밝혀져서 단순 부착에 의한 활성에의 기여를 암시하고 있다. 뿐만 아니라 NTER 다음에 붙어 있는 아미노산은 제거되었을 때 활성이 소실되는 매우 중요한 아미노산임이 밝혀졌다. 이러한 사실에 근거, 서로 다른 복제원점을 가짐으로써 동일한 세포 내에 존재할 수 있으며 발현 체계가 동일하나 copy수가 차이가 있어서 단백질 발현 양에 차이를 가져다 주는 새로운 단백질 동시 발현체계를 개발하고 이를 적용하여 NTER 함유 펩타이드를 copy수가 많은 pET23b 체계의 담체에서, ErmSF는 copy수가 적은 pACYC184 담체 체계에서 발현 시킴으로써 펩타이드가 한 세포 내에서 ErmSF 보다 훨씬 더 많이 발현되도록 하여 이 펩타이드가 ErmSF의 활성을 저해할 수 있는지 확인하였다. 계획된 대로 IPTG에 의한 유도 없이도 펩타이드가 ErmSF보다 세포 내에서 훨씬 많이 발현되었다. 그러나 생체 내에서는 그 활성의 저해를 확인 할 수 없었다. 따라서 ErmSF의 활성은 NTER 펩타이드의 단순한 부착에 의해서 이루어지는 것이 아니라 conformational change 등의 역동적인 상호작용을 통하여 이루어지는 것으로 사료되었다. 따라서 ErmSF와 23S rRNA와의 복합체 구조의 규명 그리고 NTER과 ErmSF protein body의 부착양식에 대한 구체적인 생화학적 규명이 이루어지면 이러한 접근법은 이 단백질의 억제제를 창출하는데 기여를 할 수 있을 것으로 사료된다.

Keywords

References

  1. Bethesda Research Laboratories. 1986. BRL pUC host: E. coli $DH5{\alpha}$ competent cells. Focus 8, 9.
  2. Bussiere, D.E., S.W. Muchmore, C.G. Dealwis, G. Schluckebier, V.L. Nienaber, R.P. Edalji, K.A. Walter, U.S. Ladror, T.F. Holzman, and C. Abad-Zapatero. 1998. Crystal structure of ErmC', an rRNA methyltransferase which mediates antibiotic resistance in bacteria. Biochemistry 37, 7103-7112. https://doi.org/10.1021/bi973113c
  3. Chang, A.C.Y. and S.N. Cohen. 1978. Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J. Bacteriol. 134, 1141-1156.
  4. Cundliffe, E. 1989. How antibiotic-producing organisms avoid suicide. Annu. Rev. Microbiol. 43, 207-223. https://doi.org/10.1146/annurev.mi.43.100189.001231
  5. Frontiers in Biotechnology : Antibiotic Resistance (American Association for the Advancement of Science, Washington, DC, 1994)
  6. Jin, H.J. 1999. ermSF, a ribosomal RNA adenine N6-methyltransferase gene from Streptomyces fradiae, confers MLS (macrolide-lincosamide-streptogramin B) resistance to E. coli when it is expressed. Mol. Cells 9, 252-257.
  7. Jin, H.J. and Y.D. Yang. 2002. Purification and biochemical characterization of the ErmSF macrolide-lincosamide-streptogramin B resistance factor protein expressed as a hexahistidine-tagged protein in Escherichia coli. Protein Expr Purif. 25, 149-159. https://doi.org/10.1006/prep.2002.1621
  8. Jin, H.J. 2006. Functional role of peptide segment containing 1-25 amino acids in N-terminal end region of ErmSF. Kor. J. Microbiol. 42 165-171.
  9. Jin, H.J. 2008. Functional role of 60RR61 in 23S rRNA methylation, which is in N-terminal end region of ErmSF. Kor. J. Microbiol. 44, 193-198.
  10. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T. Nature 227, 680-685. https://doi.org/10.1038/227680a0
  11. Lai, C.J., B. Weisblum, S.R. Fahnestock, and M. Nomura. 1973. Alteration of 23S ribosomal RNA and erythromycin-induced resisitance to lincomycin and spiramycin in Staphylococcus aureus. J. Mol. Biol. 74, 67-72. https://doi.org/10.1016/0022-2836(73)90355-0
  12. Lee, H.J. and H.J. Jin. 2004. Deletion of N-terminal end region of ErmSF leads to an amino acid having important role in methyl transfer reaction. Kor. J. Microbiol. 40 257-262.
  13. Maravic, G., M. Feder, S. Ponger, M. Fogel, and J.M. Bujnicki. 2003. Mutational analysis defines the roles of conserved amino acid residues in the predicted catalytic pocket of the rRNA:m6A methyltransferase ErmC. J. Mol. Biol. 332, 99-109. https://doi.org/10.1016/S0022-2836(03)00863-5
  14. Marktrides, S.C. 1996. Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol. Rev. 60, 512-538.
  15. Moffatt, B.A. and F.W. Studier. 1986. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J. Mol. Biol. 189, 113-130. https://doi.org/10.1016/0022-2836(86)90385-2
  16. Park, A.E., H. Kim, and H.J. Jin. 2010. Phylogenetic analysis of rRNA methyltransferases, Erm and KsgA, as related to antibiotic resistance. FEMS Microbiol. Lett. 309, 151-162.
  17. Roberts, M.C., J. Sutcliffe, P. Courvalin, L.B. Jensen, J. Rood, and H. Seppala. 1999. Nomenclature for macrolide and macrolide-lincomycin-streptogramin B resistance determinants. Antimicrob. Agents Chemother. 43, 2823-2830.
  18. Rose, R.E. 1988. The nucleotide sequence of pACYC184. Nucleic Acids Res. 16, 355. https://doi.org/10.1093/nar/16.1.355
  19. Rosenberg, A.H., B.N. Lade, D. Chui, S. Lin, J.J. Dunn, and F.W. Studier. 1987. Vectors for selective expression of cloned DNAs by T7 RNA polymerase. Gene 56, 125-135. https://doi.org/10.1016/0378-1119(87)90165-X
  20. Sambrook, J., E.F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, NY, USA.
  21. Schluckebier, G., P. Zhong, K.D. Stewart, T.J. Kavanaugh, and C. Abad-Zapatero. 1999. The 2.2 $\AA$ structure of the rRNA methyltransferase ErmC' and its complexes with cofactor and cofactor analogs: implications for the reaction mechanism. J. Mol. Biol. 289, 277-291. https://doi.org/10.1006/jmbi.1999.2788
  22. Selzer, G., T. Som, T. Itoh, and J. Tomizawa. 1983. The origin of replication of plasmid p15A and comparative studies on the nucleotide sequences around the origin of related plasmids. Cell 32, 119-129. https://doi.org/10.1016/0092-8674(83)90502-0
  23. Skinner, R., E. Cundliffe, and F.J. Schmidt. 1983. Site for Action of a ribosomal RNA methylase responsible for resistance to erythromycin and other antibiotics. J. Biol. Chem. 258, 12702-12706.
  24. Studier, F.W. and B.A. Moffatt. 1986. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J. Mol. Biol. 189, 113-130. https://doi.org/10.1016/0022-2836(86)90385-2
  25. Studier, F.W., A.H. Rosenberg, J.J. Dunn, and J.W. Dubendorff. 1990. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 185, 60-89.
  26. Weisblum, B. 1995. Erythromycin resistance by ribosome modification. Antimicrob. Agents Chemother. 39, 577-585. https://doi.org/10.1128/AAC.39.3.577