• Title/Summary/Keyword: ErmSF

Search Result 9, Processing Time 0.021 seconds

Investigation on Inhibitory Effect of ErmSF N-Terminal End Region Peptide on ErmSF Methyltansferase Activity In Vivo Through Development of Co-Expression System of Two Different Proteins in One Cell (서로 다른 두 단백질의 세포 내 동시 발현 체계의 개발을 통한 ErmSF에서 특이적으로 발견되는 N-Terminal End Region (NTER)을 포함하는 펩타이드의 생체내에서의 ErmSF 활성 억제 효과 검색)

  • Jin, Hyung-Jong
    • Korean Journal of Microbiology
    • /
    • v.47 no.3
    • /
    • pp.200-208
    • /
    • 2011
  • Most problematic antibiotic resistance mechanism for MLS (macrolide-lincosamide-streptogramn B) antibiotics encountered in clinical practice is mono- or dimethylation of specific adenine residue at 2058 (E. coli coordinate) of 23S rRNA which is performed by Erm (erythromycin ribosome resistance) protein through which bacterial ribosomes reduce the affinity to the antibiotics and become resistant to them. ErmSF is one of the four gene products produced by Streptomyces fradiae to be resistant to its own antibiotic, tylosin. Unlike other Erm proteins, ErmSF harbors idiosyncratic long N-terminal end region (NTER) 25% of which is comprised of arginine well known to interact with RNA. Furthermore, NTER was found to be important because when it was truncated, most of the enzyme activity was lost. Based on these facts, capability of NTER peptide to inhibit the enzymatic activity of ErmSF was sought. For this, expression system for two different proteins to be expressed in one cell was developed. In this system, two plasmids, pET23b and pACYC184 have unique replication origins to be compatible with each other in a cell. And expression system harboring promoter, ribosome binding site and transcription termination signal is identical but disparate amount of protein could be expressed according to the copy number of each vector, 15 for pACYC and 40 for pET23b. Expression of NTER peptide in pET23b together with ErmSF in pACYC 184 in E. coli successfully gave more amounts of NTER than ErmSF but no inhibitory effects were observed suggesting that there should be dynamicity in interaction between ErmSF and rRNA rather than simple and fixed binding to each other in methylation of 23S rRNA by ErmSF.

Deletion of N-terminal End Region of ErmSF Leads to an Amino Acid Having Important Role in Methyl Transfer Reaction (ErmSF에서 특이적으로 발견되는 N-terminal End Region의 점차적인 제거에 의한 활성에 중요한 아미노산의 규명)

  • Lee Hak Jin;Jin Hyung Jong
    • Korean Journal of Microbiology
    • /
    • v.40 no.4
    • /
    • pp.257-262
    • /
    • 2004
  • ErmSF is one of the ERM proteins which transfer the methyl group to A2058 in 23S rRNA to confer the resis­tance to MLS (macrolide-lincosamide-streptogramin B) antibiotics on microorganism. Unlike other ERM pro­teins, ErmSF contains long N-terminal end region (NTER), of which $25\%$ is composed of arginine that is known to interact with RNA well. Gradual deletion of NTER leaded us to the point where mutant protein lost much of activity in vivo. Overexpressed and purified mutant protein showed much reduced activity in vitro: $2\%$ activity relative to that of wild type protein. This fact suggests that this amino acid interact with RNA close to meth­ylatable adenine to locate it at an active site properly.

Site-directed Mutagenesis Analysis Elucidates the Role of 223/227 Arginine in 23S rRNA Methylation, Which Is in 'Target Adenine Binding Loop' Region of ErmSF (위치 지정 치환 변이를 이용한 ErmSF의 '타깃 Adenine Binding Loop'을 형성하는 부위에 존재하는 223/227 Arginine 잔기의 23S rRNA Methylation 활성에서의 역할 규명)

  • Jin, Hyung-Jong
    • Korean Journal of Microbiology
    • /
    • v.48 no.2
    • /
    • pp.79-86
    • /
    • 2012
  • ErmSF is one of the Erm family proteins which catalyze S-adenosyl-$_L$-methionine dependent modification of a specific adenine residue (A2058, E. coli numbering) in bacterial 23S rRNA, thereby conferring resistance to clinically important macrolide, lincosamide and streptogramin B ($MLS_B$) antibiotics. $^{222}FXPXPXVXS^{230}$ (ErmSF numbering) sequence appears to be a consensus sequence among the Erm family. This sequence was supposed to be involved in direct interaction with the target adenine from the structural studies of Erm protein ErmC'. But in DNA methyltarnsferase M. Taq I, this interaction have been identified biochemically and from the complex structure with substrate. Arginine 223 and 227 in this sequence are not conserved among Erm proteins, but because of the basic nature of residues, it was expected to interact with RNA substrates. Two amino acid residues were replaced with Ala by site-directed mutagenesis. Two mutant proteins still maintained its activity in vivo and resistant to the antibiotic erythromycin. Compared to the wild-type ErmSF, R223A and R227A proteins retained about 50% and 88% of activity in vitro, respectively. Even though those arginine residues are not essential in the catalytic step, with their positive charge they may play an important role for RNA binding.

Domain Expression of ErmSF, MLS (macrolide-lincosamide-streptogramin B) Antibiotic Resistance Factor Protein (MLS (macrolide-lincosamide-streptogramin B) 항생제 내성인자 단백질인 ErmSF의 domain발현)

  • 진형종
    • Korean Journal of Microbiology
    • /
    • v.37 no.4
    • /
    • pp.245-252
    • /
    • 2001
  • Erm proteins, MLS (macrolide-lincosamide-streptogramin B) resistance factor proteins, show high degree of amino acid sequence homology and comprise of a group of structurally homologous N-methyltransferases. On the basis of the recently determined structures of ErmC` and ErmAM, ErmSF was divided into two domains, N-terminal end catalytic domain and C-terminal end substrate binding domain and attempted to overexpress catalytic domain in E. coli using various pET expression systems. Three DNA fragments were used to express the catalytic domain: DNA fragment 1 encoding Met 1 through Glu 186, DNA fragment 2 encoding Arg 60 to Glu 186 and DNA fragment 3 encoding Arg 60 through Arg 240. Among the pET expression vectors used, pET 19b successfully expressed the DNA fragment 3 and pET23b succeeded in expression of DNA fragment 1 and 2. But the overexpressed catalytic domains existed as inclusion body, a insoluble aggregate. To assist the soluble expression of ErmSF catalytic domains, Coexpression of chaperone GroESL or Thioredoxin and lowering the incubation temperature to $22^{\circ}C$ were attempted, as did in the soluble expression of the whole ErmSF protein. Both strategies did not seem to be helpful. Solubilization with guanidine-HCl and renaturation with gradual removal of denaturant and partial digestion of overexpressed whole ErmSF protein (expressed to the level of 126 mg/ι culture as a soluble protein) with proteinase K, nonspecific proteinase are under way.

  • PDF

Effect of Truncation of 38 Amino Acids in N-terminal Region of ErmSF, a MLSB Antibiotic Resistance Factor Protein, on Enzymatic Activity (MLSB 항생제 내성인자인 ErmSF의 N-terminal 38개 아미노산 제거가 항생제 내성 효소활성에 미치는 영향)

  • Lee, Hak Jin;Jin, Hyung Jong
    • Korean Journal of Microbiology
    • /
    • v.50 no.3
    • /
    • pp.239-244
    • /
    • 2014
  • ErmSF is one of the four antibiotic resistance factor proteins expressed by Streptomyces fradiae, antibiotic tylosin producer, which renders $MLS_B$ (macrolide-lincosamide-streptogramin B) antibiotic resistance through dimethylating A2058 of 23S rRNA, thereby reducing the affinity of antibiotic to ribosome. Unlike other Erm proteins, ErmSF harbors long N-terminal end region. To investigate its role in enzyme activity, mutant ErmSF deleted of 1-38 amino acids was overexpressed and activity in vivo and in vitro was observed. In vitro enzymatic assay showed that mutant protein exhibited reduced activity by 20% compared to the wild type enzyme. Due to the reduced activity of the mutant protein, cells expressing mutant protein showed weaker resistance to erythromycin than cells with wild type enzyme. Presumably, the decrease in enzyme activity was caused by the hindrance in substrate binding and (or) product release, not by defect in the methyl group transfer occurred in active site.

Cloning of tlrD, 23S rRNA Monomethyltransferase Gene, Overexpression in Eschepichia coli and Its Activity (235 rRNA Monomethyltransferase인 tlrD의 클로닝, 이의 대장균에서 대량생산과 활성 검색)

  • Jin, Hyung-Jong
    • Korean Journal of Microbiology
    • /
    • v.43 no.3
    • /
    • pp.166-172
    • /
    • 2007
  • ERM proteins transfer the methyl group to $A_{2058}$ in 23S rRNA, which reduces the affinity of MLS (macrolide-lincosamide-streptogramin B) antibiotics to 23S rRNA, thereby confer the antibiotic resistance on micro-organisms ranging from antibiotic producers to pathogens and are classified into monomethyltransferase and dimethyltransferase. To investigate the differences between mono- and dimethyltransferase, tirD, a representative monomethylase gene was cloned in Escherichia coli from Streptomyces fradiae which contains ermSF, dimethylase gene as well to overexpress the TlrD for the first time. T7 promoter driven expression system successfully overexpress tlrD as a insoluble aggregate at $37^{\circ}C$ accumulating to around 55% of the total cell protein but unlike ErmSF, culturing at temperature as low as $18^{\circ}C$ did not make insoluble aggregate of protein into soluble protein. Coexpression of Thioredoxin and GroESL, chaperone was not helpful in turning into soluble protein either as in case of ErmSF. These results might suggest that differences between mono- and dimethylase could be investigated on the basis of the characteristics of protein structure. However, a very small amount of soluble protein which could not be detected by SDS-PAGE conferred antibiotic resistance on E. coli as in ErmSF which was expected from the activity exerted by monmethylase in a cell.

Functional Role of Peptide Segment Containing 1-25 Amino Acids in N-terminal End Region of ErmSF (ErmSF에서 특이적으로 발견되는 N-terminal end region에 존재하는 1-25번째 아미노산을 함유하는 peptide segment의 효소 활성에서의 역할)

  • Jin, Hyung-Jong
    • Korean Journal of Microbiology
    • /
    • v.42 no.3
    • /
    • pp.165-171
    • /
    • 2006
  • ERM proteins transfer the methyl group to $A_{2058}$ in 23S rRNA to confer the resistance to MLS (macrolide-lincosamide-streptogramin B) antibiotics on microorganism ranging from antibiotic producers to pathogens. To define the functional role of peptide segment encompassing amino acid residues 1 to 25 in NTER (N-terminal end region) of ErmSF, one of the ERM proteins, DNA fragment encoding mutant protein deprived of that peptide was cloned and overexpressed in E. coli to obtain a purified soluble form protein to the apparent homogeneity in the yield of 12.65 mg per liter of culture. The in vitro activity of mutant protein was found to be 85% compared to wild type ErmSF, suggesting that this peptide interact with substrate to affect the enzyme activity. This diminished activity of mutant protein caused the delayed expression of antibiotic resistance in vivo, that at fIrst cells expressing mutant protein showed the retarded growth due to the antibiotic action but with time cells inhibited by antibiotic gradually recovered the viability to exert the resistance to the same extent as those with wild type protein.

Functional Role of $^{60}RR^{61}$ in 23S rRNA Methylation, Which is in N-Terminal End Region of ErmSF (ErmSF의 N-Terminal End Region에 존재하는 $^{60}RR^{61}$의 23S rRNA Methylation에서의 역할)

  • Jin, Hyung-Jong
    • Korean Journal of Microbiology
    • /
    • v.44 no.3
    • /
    • pp.193-198
    • /
    • 2008
  • ErmSF is one of the proteins which are produced by Streptomyces fradiae to avoid suicide by its autogenous macrolide antibiotic, tylosin and one of ERM proteins which are responsible for transferring the methyl group to $A_{2058}$ (Escherichia coli coordinate) in 23S rRNA, which reduces the affinity of MLS (macrolide-lincosamide-streptogramin B) antibiotics to 23S rRNA, thereby confers the antibiotic resistance on microorganisms ranging from antibiotic producers to pathogens. ErmSF contains an extra N-terminal end region (NTER), which is unique to ErmSF and 25% of amino acids of which is arginine known well to interact with RNA. Noticeably, arginine is concentrated in $^{58}RARR^{61}$ and functional role of each arginine in this motif was investigated through deletion and site-directed mutagenesis and the activity of mutant proteins in cell R60 and R61 was found to play an important role in enzyme activity through the study with deletion mutant up to R60 and R61. With the site-directed mutagenesis using deletion mutant of 1 to 59 (R60A, R61A, and RR60, 61AA), R60 was found more important than R61 but R61 was necessary for the proper activity of R60 and vice versa. And these amino acids were presumed to assume a secondary structure of $\alpha$-helix.

Mutational Analysis Elucidates the Role of Conserved 237 Arginine in 23S rRNA Methylation, Which is in the Concave Cleft Region of ErmSF (ErmSF에서 두 도메인 사이에 존재하는 잘 보존된 237번 아르지닌 잔기의 위치 지정 치환 변이의 효소 활성 검색을 통한 역할 규명)

  • Jin, Hyung Jong
    • Korean Journal of Microbiology
    • /
    • v.49 no.2
    • /
    • pp.105-111
    • /
    • 2013
  • The Erm family of adenine-$N^6$ methyltransferases (MTases) is responsible for the development of resistance to macrolide-lincosamide-streptogramin B antibiotics through the methylation of 23S ribosomal RNA. Recently, it has been proposed that well conserved amino acids in ErnC' located in concave cleft between N-terminal 'catalytic' domain and C-terminal 'RNA-binding' domain interacts with substrate RNA. We carried out the site-directed mutagenesis and studied the function of the ErmSF R237 mutant in vitro and in vivo. R237 amino acid residue is located in the concave cleft between two domains. Furthermore this residue is very highly conserved in almost all the Erm family. Purified mutant protein exhibited only 51% enzyme activity compared to wild-type. Escherichia coli with R237A mutant protein compared to the wild-type protein expressing E. coli did not show any difference in its MIC (minimal inhibitory concentration) suggesting that even with lowered enzyme activity, mutant protein was able to efficiently methylate 23S rRNA to confer the resistance on E. coli expressing this protein. But this observation strongly suggests that R237 of ErmSF probably interacts with substrate RNA affecting enzyme activity significantly.