• Title/Summary/Keyword: NTER peptide

Search Result 2, Processing Time 0.016 seconds

Investigation on Inhibitory Effect of ErmSF N-Terminal End Region Peptide on ErmSF Methyltansferase Activity In Vivo Through Development of Co-Expression System of Two Different Proteins in One Cell (서로 다른 두 단백질의 세포 내 동시 발현 체계의 개발을 통한 ErmSF에서 특이적으로 발견되는 N-Terminal End Region (NTER)을 포함하는 펩타이드의 생체내에서의 ErmSF 활성 억제 효과 검색)

  • Jin, Hyung-Jong
    • Korean Journal of Microbiology
    • /
    • v.47 no.3
    • /
    • pp.200-208
    • /
    • 2011
  • Most problematic antibiotic resistance mechanism for MLS (macrolide-lincosamide-streptogramn B) antibiotics encountered in clinical practice is mono- or dimethylation of specific adenine residue at 2058 (E. coli coordinate) of 23S rRNA which is performed by Erm (erythromycin ribosome resistance) protein through which bacterial ribosomes reduce the affinity to the antibiotics and become resistant to them. ErmSF is one of the four gene products produced by Streptomyces fradiae to be resistant to its own antibiotic, tylosin. Unlike other Erm proteins, ErmSF harbors idiosyncratic long N-terminal end region (NTER) 25% of which is comprised of arginine well known to interact with RNA. Furthermore, NTER was found to be important because when it was truncated, most of the enzyme activity was lost. Based on these facts, capability of NTER peptide to inhibit the enzymatic activity of ErmSF was sought. For this, expression system for two different proteins to be expressed in one cell was developed. In this system, two plasmids, pET23b and pACYC184 have unique replication origins to be compatible with each other in a cell. And expression system harboring promoter, ribosome binding site and transcription termination signal is identical but disparate amount of protein could be expressed according to the copy number of each vector, 15 for pACYC and 40 for pET23b. Expression of NTER peptide in pET23b together with ErmSF in pACYC 184 in E. coli successfully gave more amounts of NTER than ErmSF but no inhibitory effects were observed suggesting that there should be dynamicity in interaction between ErmSF and rRNA rather than simple and fixed binding to each other in methylation of 23S rRNA by ErmSF.

Functional Role of Peptide Segment Containing 1-25 Amino Acids in N-terminal End Region of ErmSF (ErmSF에서 특이적으로 발견되는 N-terminal end region에 존재하는 1-25번째 아미노산을 함유하는 peptide segment의 효소 활성에서의 역할)

  • Jin, Hyung-Jong
    • Korean Journal of Microbiology
    • /
    • v.42 no.3
    • /
    • pp.165-171
    • /
    • 2006
  • ERM proteins transfer the methyl group to $A_{2058}$ in 23S rRNA to confer the resistance to MLS (macrolide-lincosamide-streptogramin B) antibiotics on microorganism ranging from antibiotic producers to pathogens. To define the functional role of peptide segment encompassing amino acid residues 1 to 25 in NTER (N-terminal end region) of ErmSF, one of the ERM proteins, DNA fragment encoding mutant protein deprived of that peptide was cloned and overexpressed in E. coli to obtain a purified soluble form protein to the apparent homogeneity in the yield of 12.65 mg per liter of culture. The in vitro activity of mutant protein was found to be 85% compared to wild type ErmSF, suggesting that this peptide interact with substrate to affect the enzyme activity. This diminished activity of mutant protein caused the delayed expression of antibiotic resistance in vivo, that at fIrst cells expressing mutant protein showed the retarded growth due to the antibiotic action but with time cells inhibited by antibiotic gradually recovered the viability to exert the resistance to the same extent as those with wild type protein.