DOI QR코드

DOI QR Code

Biochemical Characterization of the Exopolysaccharide Purified from Laetiporus sulphureus Mycelia

  • Seo, Min-Jeong (Department of Medical Bioscience, Dong-A University) ;
  • Kang, Byoung-Won (Medi-Farm Industrialization Research Center, Dong-A University) ;
  • Park, Jeong-Uck (Medi-Farm Industrialization Research Center, Dong-A University) ;
  • Kim, Min-Jeong (Medi-Farm Industrialization Research Center, Dong-A University) ;
  • Lee, Hye-Hyeon (Medi-Farm Industrialization Research Center, Dong-A University) ;
  • Choi, Yung-Hyun (Department of Biochemistry, College of Oriental Medicine, Dong-Eui University) ;
  • Jeong, Yong-Kee (Department of Medical Bioscience, Dong-A University)
  • Received : 2011.06.24
  • Accepted : 2011.08.12
  • Published : 2011.12.28

Abstract

The extracellular polysaccharide (EPS) was isolated from mycelial cultures of Laetiporus sulphureus var. miniatus and purified by DEAE cellulose and Sephadex G-50 column chromatography. The purified EPS (EPS-2-1) was composed of only glucose units and its molecular mass was 6.95 kDa. The chemical structure of EPS-2-1 consisted of a main chain containing ($1{\rightarrow}4$)-Glcp units with branches at the C-6 position of the chain carrying-Glcp-($1{\rightarrow}4$)-linked residues. The effect of purified EPS on immunomodulatory genes and proteins of the Bcl-2 family was observed using cultured U937 human leukemia cells. Of note, the levels of Bax and Bad proteins treated with the EPS (4 mg/ml) were approximately 23- and 18-times higher than those in non-treated cells, respectively. These results may suggest that the EPS purified from the mushroom L. sulphureus is associated with the activation of immunomodulatory mediators, Bax and Bad proteins.

Keywords

References

  1. Agrawal, P. K. 1992. NMR spectroscopy in the structural elucidation of oligosaccharides and glycosides. Phytochemistry 3: 3307-3330.
  2. Alquini, G., E. R. Carbonero, F. R. Rosado, C. Cosentino, and M. Iacomini. 2004. Polysaccharide from the fruit bodies of the basidiomycete Laetiporus sulphureus (Bull.; Fr.) Murr. Microbiol. Lett. 230: 47-52. https://doi.org/10.1016/S0378-1097(03)00853-X
  3. Burdsall, H. H. and M. T. Banik. 2001. The genus Laetiporus in North America. Harv. Pap. Bot. 6: 43-55.
  4. Cao, W., X. Q. Li, L. Liu, T. H. Yang, C. Li, H. T. Fan, et al. 2006. Structure of an anti-tumor polysaccharide from Angelica sinensis (Oliv.) Diels. Carbohydr. Polym. 6: 149-159.
  5. Chauveau, C., P. Talaga, J. M. Wieruszeski, G. Strecker, and L. Chavant. 1996. A water-soluble $\beta$-D-glucan from Boletus erythropus. Phytochemistry 4: 413-415.
  6. Ciucanu, I. and F. Kerek. 1984. A simple and rapid method for the permethylation of carbohydrates. Carbohydr. Res. 13: 209-217.
  7. Dong, Q., X. Yang, and J. N. Fang. 2002. Structural characterization of water soluble $\beta$-D-glucan from fruiting bodies of Agaricus blazei Murr. Carbohydr. Res. 33: 1417-1421.
  8. Dubois, M., K. A. Gillers, J. K. Hamilton, P. A. Robers, and F. Smith. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 2: 350-352.
  9. Dwek, R. A. 1996. Glycobiology: Toward understanding the function of sugars. Chem. Rev. 96: 683-720. https://doi.org/10.1021/cr940283b
  10. Guldur, T. and Y. C. Lee. 2002. Analyses of carbohydrates of apolipoprotein E in VLDL and IDL + LDL of rat serum. Turk. J. Vet. Anim. Sci. 2: 257-262.
  11. Hwang, H. S., S. H. Lee, Y. M. Baek, S. W. Kim, Y. K. Jeong, and J. W. Yun. 2008. Production of extracellular polysaccharides by submerged mycelial culture of Laetiporus sulphureus var. miniatus and their insulinotropic properties. Appl. Microbiol. Biotechnol. 78: 419-429. https://doi.org/10.1007/s00253-007-1329-6
  12. Hong, M. R., Y. S. Kim, A. R. Joo, J. K. Lee, Y. S. Kim, and D. K. Oh. 2009. Purification and characterization of a thermostable $\beta$-1,3-1,4-glucanase from Laetiporus sulphureus var. miniatus. J. Microbiol. Biotechnol. 19: 818-822.
  13. Jansson, P. E., L. Kenne, H. Liedgren, B. Lindberg, and J. Lonngren. 1976. A practical guide to the methylation of sugars. Chem. Commun. Stockholm Univ. 8: 1-72.
  14. Jung, Y. S., B. K. Yang, Y. T. Jeong, R. Islam, S. M. Kim, and C. H. Song. 2008. Immunomodulating activities of watersoluble exopolysaccharides obtained from submerged cultures of Lentinus lepideus. J. Microbiol. Biotechnol. 18: 1431-1438.
  15. Kamada, S., A. Shimono, Y. Shinto, T. Tsujimura, T. Takahashi, T. Noda, et al. 1995. Bcl-2 deficiency in mice leads to pleiotropic abnormalities: Accelerated lymphoid cell death in thymus and spleen, polycystic kidney, hair hypopigmentation, and distorted small intestine. Cancer Res. 55: 354-359.
  16. Kobayashi, H. and H. Kim. 2003. Characterization of aspartic proteinase from Basidiomycete, Laetiporus sulphureus. Food Sci. Technol. Res. 9: 30-34. https://doi.org/10.3136/fstr.9.30
  17. Lehninger, A. L. 1992. Principles of Biochemistry, pp. 277- 298. Worth Publishers, New York.
  18. Liu, F., V. E. C. Ooi, and S. T. Chang. 1997. Free radical scavenging activities of mushroom polysaccharide extracts. Life Sci. 60: 763-771. https://doi.org/10.1016/S0024-3205(97)00004-0
  19. Martinet, W., D. V. den Plas, H. Raes, R. Reekmans, and R. Contreras. 1999. Bax-induced cell death in Pichia pastoris. Biotechnol. Lett. 21: 821-829. https://doi.org/10.1023/A:1005586614543
  20. Motoyama, N., T. Kimura, T. Takahashi, T. Watanabe, and T. Nakano. 1999. Bcl-x prevents apoptotic cell death of both primitive and definitive erythrocytes at the end of maturation. J. Exp. Med. 189: 1691-1698. https://doi.org/10.1084/jem.189.11.1691
  21. Murrill, W. A. 1904. The Polyporaceae of North America IX. Inonotus, Sesia and monotypic genera. Bull. Torrey Bot. Club 31: 593-610. https://doi.org/10.2307/2478612
  22. Nicholson, D. W. 2000. From bench to clinic with apoptosisbased therapeutic agents. Nature 407: 810-816. https://doi.org/10.1038/35037747
  23. Padmanabhan, A., S. Liu, and Z. Song. 2008. Bad plays a more significant role than Bid and Bim in mediating cell death signals in batch cultures of HEK 293 cells. Biotechnol. Lett. 30: 819-827. https://doi.org/10.1007/s10529-007-9630-0
  24. Papp-Szabo, E., M. I. Kanipes, P. Guerry, and M. A. Monteiro. 2005. Cell-surface $\alpha$-glucan in Campylobacter jejuni 81-176. Carbohydr. Res. 340: 2218-2221. https://doi.org/10.1016/j.carres.2005.06.023
  25. Vlachou, S., A. Politou, P. Dais, K. Mazeau, and F. R. Taravel. 2001. Structure and dynamics of the branched polysaccharide scleroglucan in dilute solutions studied by 1D and 2D NMR spectroscopy. Carbohydr. Polym. 46: 349-363. https://doi.org/10.1016/S0144-8617(00)00334-9
  26. Wolfrom, M. L. and A. Thompsom. 1963. Reduction with sodium borohydride. Methods Carbohydr. Chem. 2: 65-65.
  27. Wolfrom, M. L. and A. Thompsom. 1963. Acetylation. Methods Carbohydr. Chem. 2: 211-215.
  28. Yang, L. and L. M. Zhang. 2009. Chemical structural and chain conformational characterization of some bioactive polysaccharides isolated from natural sources. Carbohydr. Polym. 76: 349-361. https://doi.org/10.1016/j.carbpol.2008.12.015
  29. Zhang, J. J., Q. Zhang, J. Wang, X. Shi, and Z. Zhang. 2009. Analysis of the monosaccharide composition of fucoidan by precolumn derivation HPLC. Chinese J. Oceanol. Limnol. 27: 578-582. https://doi.org/10.1007/s00343-009-9205-0

Cited by

  1. Purification and Characterization of Biofilm-Associated EPS Exopolysaccharides from ESKAPE Organisms and Other Pathogens vol.8, pp.6, 2011, https://doi.org/10.1371/journal.pone.0067950
  2. Modulation of Biofilm Exopolysaccharides by the Streptococcus mutans vicX Gene vol.6, pp.None, 2011, https://doi.org/10.3389/fmicb.2015.01432
  3. Effects of Laetiporus sulphureus -Fermented Wheat Bran on Growth Performance, Intestinal Microbiota and Digesta Characteristics in Broiler Chickens vol.10, pp.9, 2011, https://doi.org/10.3390/ani10091457