DOI QR코드

DOI QR Code

Cloning of metK from Actinoplanes teichomyceticus ATCC31121 and Effect of Its High Expression on Antibiotic Production

  • Kim, Du-Yeong (Department of Food Science and Biotechnology, Kyungnam University) ;
  • Hwang, Yong-Il (Department of Food Science and Biotechnology, Kyungnam University) ;
  • Choi, Sun-Uk (Department of Food Science and Biotechnology, Kyungnam University)
  • Received : 2011.01.14
  • Accepted : 2011.07.30
  • Published : 2011.12.28

Abstract

A metK gene encoding S-adenosyl-L-methionine synthetase was cloned from the non-Streptomyces actinomycetes, Actinoplanes teichomyceticus ATCC31121. In order to evaluate the effect of the metK expression on antibiotic production in actinomycetes, an expression vector harboring the metK gene was constructed and introduced into Streptomyces lividans TK24 and A. teichomyceticus, and the antibiotic production of the exconjugants was assessed. As a result, it was determined that the expression of metK induced 17-fold and 2.2-fold increases in actinorhodin production from S. lividans TK24 and teicoplanin production from A. teichomyceticus, respectively, compared with the control strains.

Keywords

References

  1. Bauernfeind, A. and C. Petermuller. 1982. In vitro activity of teichomycin A2 in comparison with penicillin and vancomycin against Gram-positive cocci. Eur. J. Clin. Microbiol. 1: 278-281. https://doi.org/10.1007/BF02019971
  2. Bibb, M. J., P. R. Findlay, and M. W. Johnson. 1984. The relationship between base composition and codon usage in bacterial genes and its use for the simple and reliable identification of protein-coding sequences. Gene 30: 157-166. https://doi.org/10.1016/0378-1119(84)90116-1
  3. Bibb, M. J., G. R. Janssen, and J. Ward. 1985. Cloning and analysis of the promoter region of the erythromycin resistance gene (ermE) of Streptomyces erythraeus. Gene 38: 215-226. https://doi.org/10.1016/0378-1119(85)90220-3
  4. Bierman, M., R. Logan, K. O'Brien, E. T. Seno, R. N. Rao, and B. E. Schoner. 1992. Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116: 43-49. https://doi.org/10.1016/0378-1119(92)90627-2
  5. Borghi, A., P. Antonini, M. Zanol, P. Ferrari, L. F. Zerilli, and G. C. Lancini. 1989. Isolation and structure determination of two new analogs of teicoplanin, a glycopeptide antibiotic. J. Antibiot. (Tokyo) 42: 361-366. https://doi.org/10.7164/antibiotics.42.361
  6. Chiang, P. K., R. K. Gordon, J. Tal, G. C. Zeng, B. P. Doctor, K. Pardhasaradhi, and P. P. McCann. 1996. S-Adenosylmethionine and methylation. FASEB J. 10: 471-480.
  7. Ha, H. S., Y. I. Hwang, and S. U. Choi. 2008. Application of conjugation using phiC31 att/int system for Actinoplanes teichomyceticus, a producer of teicoplanin. Biotechnol. Lett. 30: 1233-1238. https://doi.org/10.1007/s10529-008-9671-z
  8. Heydorn, A., T. Suhr-Jessen, and J. Nielsen. 1999. Growth and production kinetics of a teicoplanin producing strain of Actinoplanes teichomyceticus. J. Antibiot. (Tokyo) 52: 40-44. https://doi.org/10.7164/antibiotics.52.40
  9. Kieser, T., M. J. Bibb, K. F. Chater, and D. A. Hopwood. 2000. Practical Streptomyces Genetics. The John Innes Foundation, Norwich, UK.
  10. Kim, D. J., J. H. Huh, Y. Y. Yang, C. M. Kang, I. H. Lee, C. G. Hyun, et al. 2003. Accumulation of S-adenosyl-L-methionine enhances production of actinorhodin but inhibits sporulation in Streptomyces lividans TK23. J. Bacteriol. 185: 592-600. https://doi.org/10.1128/JB.185.2.592-600.2003
  11. Lu, S. C. 2000. S-Adenosylmethionine. Int. J. Biochem. Cell. Biol. 32: 391-395. https://doi.org/10.1016/S1357-2725(99)00139-9
  12. Motamedi, H., A. Shafiee, and S. J. Cai. 1995. Integrative vectors for heterologous gene expression in Streptomyces spp. Gene 160: 25-31. https://doi.org/10.1016/0378-1119(95)00191-8
  13. Oh, T. J., N. P. Niraula, K. Liou, and J. K. Sohng. 2010. Identification of the duplicated genes for S-adenosyl-L-methionine synthetase (metK1-sp and metK2-sp) in Streptomyces peucetius var. caesius ATCC 27952. J. Appl. Microbiol. 109: 398-407.
  14. Okamoto, S., A. Lezhava, T. Hosaka, Y. Okamoto-Hosoya, and K. Ochi. 2003. Enhanced expression of S-adenosylmethionine synthetase causes overproduction of actinorhodin in Streptomyces coelicolor A3(2). J. Bacteriol. 185: 601-609. https://doi.org/10.1128/JB.185.2.601-609.2003
  15. Parenti, F., G. Beretta, M. Berti, and V. Arioli. 1978. Teichomycins, new antibiotics from Actinoplanes teichomyceticus nov. sp. I. Description of the producer strain, fermentation studies and biological properties. J. Antibiot. (Tokyo) 31: 276-283. https://doi.org/10.7164/antibiotics.31.276
  16. Rao, R. N., N. A. Richardson, and S. Kuhstoss. 1987. Cosmid shuttle vectors for cloning and analysis of Streptomyces DNA. Methods Enzymol. 153: 166-198.
  17. Sambrook, J. D. and W. Russell. 2001. Molecular Cloning: A Laboratory Manual, 3rd Ed. Cold Spring Harbor, New York. USA.
  18. Smokvina, T., P. Mazodier, F. Boccard, C. J. Thompson, and M. Guerineau. 1990. Construction of a series of pSAM2-based integrative vectors for use in actinomycetes. Gene 94: 53-59. https://doi.org/10.1016/0378-1119(90)90467-6
  19. Zhang, X., M. Fen, X. Shi, L. Bai, and P. Zhou. 2008. Overexpression of yeast S-adenosylmethionine synthetase metK in Streptomyces actuosus leads to increased production of nosiheptide. Appl. Microbiol. Biotechnol. 78: 991-995. https://doi.org/10.1007/s00253-008-1394-5
  20. Zhao, X. Q., B. Gust, and L. Heide. 2010. S-Adenosylmethionine (SAM) and antibiotic biosynthesis: Effect of external addition of SAM and of overexpression of SAM biosynthesis genes on novobiocin production in Streptomyces. Arch. Microbiol. 192: 289-297. https://doi.org/10.1007/s00203-010-0548-x

Cited by

  1. A Novel Approach for Gene Expression Optimization through Native Promoter and 5′ UTR Combinations Based on RNA-seq, Ribo-seq, and TSS-seq of Streptomyces coelicolor vol.6, pp.3, 2011, https://doi.org/10.1021/acssynbio.6b00263
  2. Enhanced lincomycin production by co-overexpression of metK1 and metK2 in Streptomyces lincolnensis vol.45, pp.5, 2018, https://doi.org/10.1007/s10295-018-2029-1
  3. Integrating vectors for genetic studies in the rare Actinomycete Amycolatopsis marina vol.19, pp.None, 2011, https://doi.org/10.1186/s12896-019-0521-y
  4. Teicoplanin biosynthesis: unraveling the interplay of structural, regulatory, and resistance genes vol.104, pp.8, 2011, https://doi.org/10.1007/s00253-020-10436-y