References
- Amin, K. and Khanna, A. (1994), Convergence of american option values from discrete-to continuous-time financial models, Mathematical Finance, 4, 289-304. https://doi.org/10.1111/j.1467-9965.1994.tb00059.x
- Boyle, P. A. (1988), lattice framework for option pricing with two state variables, Journal of Financial and Quantitative Analysis, 23(1), 1-12. https://doi.org/10.2307/2331019
- Boyle, P., Evnine, J., and Gibbs, S. (1989), Numerical evaluation of multivariate contingent claims, The Review of Financial Studies, 2(2), 241-250. https://doi.org/10.1093/rfs/2.2.241
- Boyle, P. P. and Lau, S. H. (1994), Bumping up against the barrier with the binomial method, Journal of Derivatives, 1, 6-14.
- Broadie, M. and Detemple, J. (1996), American option valuation: new bounds, approxi-mations, and a comparison of existing methods. Review of Financial Studies, 9, 1211-1250. https://doi.org/10.1093/rfs/9.4.1211
- Cheuk, T. H. F. and Vorst, T. C. F. (1996), Complex barrier options, Journal of Derivatives, 4, 8-22. https://doi.org/10.3905/jod.1996.407958
- Clewlow, L. and Strickland, C. (1998), Implementing Derivatives Models, John Wiley & Sons, Chichester, UK.
- Cox, J., Ross, S., and Rubinstein, M. (1979), Option pricing: A simplified approach, Journal of Financial Economics, 7, 229-263. https://doi.org/10.1016/0304-405X(79)90015-1
- Derman, E., Kani, I., Ergener, D., and Bardhan, I. (1995), Enhanced numerical methods for options with barriers, Financial Analysis Journal, Nov-Dec, 65-74.
- Gaudenzi, M. and Pressacco, F. (2003), An efficient binomial method for pricing american options, Decisions in Economics and finance, 26, 1-17. https://doi.org/10.1007/s102030300000
- Haug, E. G. (1997), The complete guide to option pricing formulas, McGraw-Hill.
- Higham, D. J. (2004), An introduction to financial option valuation, Cambridge University Press.
- Kamrad, B. and Ritchken, P. (1991), Multinomial approximating models for options with k state variables, Management science, 37(12), 1640-1652. https://doi.org/10.1287/mnsc.37.12.1640
- Oksendal, B. (1998), Stochastic differential equations, Springer, Berlin.
- Kwok, Y. K. (1998), Mathematical models of financial derivatives, Springer-Verlag, Singapore.
- Lele, S. K. (1992), Compact finite difference schemes with spectral-like resolution, Journal of Computational Physics, 103, 16-42. https://doi.org/10.1016/0021-9991(92)90324-R
- Lyuu, Y. D. (2002), Financial Engineering and Computation, Cambridge.
- Reimer, E. and Rubinstein, M. (1991), Unscrambling the binary code, Risk Magazine, 4.
- Richardson, L. (1927), The deferred approach to the limit, Philosophical Transactions of the Royal Society of London, Series A, 226, 299-349. https://doi.org/10.1098/rsta.1927.0008
- Ritchken, P. (1995), On pricing barrier options, Journal of Derivatives, 3, 19-28. https://doi.org/10.3905/jod.1995.407939
- Wilmott, P., Howison, S., and Dewynne, J. (1995), The mathematics of financial derivatives, Cambridge University Press.