DOI QR코드

DOI QR Code

Study of Catalytic Performance of $La_{0.7}Sr_{0.3}Cr_{1-x}Ni_{x}O_{3}$ Perovskite for Steam Reforming of Propane

$La_{0.7}Sr_{0.3}Cr_{1-x}Ni_{x}O_{3-{\delta}$ Perovskite 촉매의 프로판 수증기 개질 반응에서의 특성 연구

  • Kim, Jae-Ro (Department of Hydrogen & Fuel Cells Engineering, Specialized Graduate School, Chonbuk National University) ;
  • Kim, Nak-Hyeon (Department of Mineral & Resources Engineering, Chonbuk National University) ;
  • Sohn, Jung-Min (Department of Mineral & Resources Engineering, Chonbuk National University)
  • 김재로 (전북대학교 수소.연료전지공학과) ;
  • 김낙현 (전북대학교 자원.에너지공학과) ;
  • 손정민 (전북대학교 자원.에너지공학과)
  • Published : 2011.12.01

Abstract

The $La_{0.7}Sr_{0.3}Cr_{1-x}Ni_{x}O_{3}$(LSCN-x) perovskites were prepared by citric acid and EDTA using a sol-gel method. The LSCN-x was characterized by BET, XRD, SEM, $H_2$-TPR, EA and TEM. The catalytic performance of LSCN-x catalysts in steam reforming of propane in the temperature range 600~$800^{\circ}C$ was investigated. Propane conversion and hydrogen yield increased with an increase in the amount of added Ni up to x=0.5 in the B-site, denoted as LSCN-0.5, under S/C=1 and S/C=1.7 reaction conditions. The LSCN-0.5 catalyst exhibited the best performance under Ni-substitution of which propane conversion and hydrogen yield was 100%, 95.9% at $800^{\circ}C$ in the S/C=1.7 condition, respectively. The morphology of carbon deposited on the catalysts after reaction exhibited filamentous carbon and amount of carbon deposited on the catalysts after reaction increased with an increase in the amount of added Ni.

$LaCrO_{3}$를 기본으로 하는 perovskite형 재료인 $La_{0.7}Sr_{0.3}Cr_{1-x}Ni_{x}O_{3}$(0.1 ${\leq}$ x ${\leq}$ 0.5)를 citric acid와 EDTA를 이용한 졸-겔법(sol-gel method)으로 합성하였다. 제조한 촉매의 특성분석은 BET, XRD, SEM, $H_2$-TPR, EA 그리고 TEM을 이용하였고, 프로판 수증기 개질 반응을 통하여 촉매 활성을 평가하였다. Perovskite 산화물의 A-site에는 Sr을 30 ml% 고정치환하고, B-site에 Ni 치환양을 증가시키면서 프로판 수증기 개질 반응 실험을 수행한 결과 Ni 치환양과 S/C의 비(steam to carbon ratio)가 증가할수록 프로판 전환율과 수소 수율이 향상되었다. $La_{0.7}Sr_{0.3}Cr_{0.5}Ni_{0.5}O_{3}$(LSCN-0.5)촉매가 S/C의 비가 1.7이고, $800^{\circ}C$의 반응온도 조건에서 100%의 프로판 전환율과 95.9%의 높은 수소 수율을 나타내어 가장 좋은 촉매 활성을 보였다. 반응 후의 촉매에서는 filamentous cabon형태의 탄소 침적형태가 나타나며, Ni 치환양이 증가할수록 침적되는 탄소의 양이 증가하는 것을 확인하였다.

Keywords

References

  1. Ming, Q., Healey, T., Allen, L. and Irving, P., "Steam Reforming of Hydrocarbon fuels," Catal. Today, 77, 51(2002). https://doi.org/10.1016/S0920-5861(02)00232-8
  2. Kikuchi, R., Iwasa, Y., Takeguchi, T. and Eguchi, K., "Partial Oxidation of $CH_{4}$ and $C_{3}H_{8}$ over Hexaaluminate-type Oxides," Appl. Catal. A: General, 281, 61(2005). https://doi.org/10.1016/j.apcata.2004.11.013
  3. Avci, A. K., Trimm, D. L. and Onsan, Z. I., "Quantitative Investigation of Catalytic Natural Gas Conversion for Hydrogen Fuel Cell Applications," Chem. Eng. J., 90(1-2), 77(2002). https://doi.org/10.1016/S1385-8947(02)00069-4
  4. Kolios, G., Frauhammer, J. and Eigenberger, G., "Autothermal Fixed-bed Reactor Concepts", Chem. Eng. Sci., 55(24), 5945(2000). https://doi.org/10.1016/S0009-2509(00)00183-4
  5. Takenaka, S., Orita, Y., Umebayashi, H., Matsune, H and Kishida, M., "High Resistance to Carbon Deposition of Silica-coated Ni Catalysts in Propane Stream Reforming," Appl. Catal. A:General, 351(2), 189(2008). https://doi.org/10.1016/j.apcata.2008.09.017
  6. Shiraga, M., Li, D., Atake, I., Shishido, T., Oumi, Y., Sano, T. and Takehira, K., "Partial Oxidation of Propane to Synthesis Gas over Noble Metals-promoted Ni/Mg(Al)O Catalysts-High Activity of Ru-Ni/Mg(Al)O Catalyst", Appl. Catal. A:General, 318, 143(2007). https://doi.org/10.1016/j.apcata.2006.10.049
  7. Urasaki, K., Tokunaga, K., Sekine, Y., Matsukata, M. and Kikuchi, E., "Production of Hydrogen by Steam Reforming of Ethanol over Cobalt and Nickel Catalysts Supported on Perovskitetype Oxides," Catal. Commun., 9(5), 600(2008). https://doi.org/10.1016/j.catcom.2007.04.007
  8. Urasaki, K., Sekine, Y., Kawabe, S., Kikuchi, E. and Matsukata, M., "Catalytic Activities and Coking Resistance of Ni/perovskites in Steam Reforming of Methane, " Appl. Catal. A., 286(1), 23(2005). https://doi.org/10.1016/j.apcata.2005.02.020
  9. Gallego, G. S., Mondragon, F., Barrault, J., Tatibouet, J. M. and Dupeyrat, C. B., "$CO_{2}$ Reforming of $CH_{4}$ over La-Ni Based Perovskite Precursors," Appl. Catal. A., 311, 164(2006). https://doi.org/10.1016/j.apcata.2006.06.024
  10. Mawdsley, J. R. and Krause, T. R., "Rare Earth-first-row Transition Metal Perovskites as Catalysts for the Autothermal Reforming of Hydrocarbon Fuels to Generate Hydrogen," Appl. Catal. A., 334, 311(2008). https://doi.org/10.1016/j.apcata.2007.10.018
  11. Lima, S. M., Assaf, J. M., Pena, M. A. and Fierro, J. L. G., "Structural Features of $La_{1-x}Ce_{x}NiO_{3}$ Mixed Oxides and Performance for the Dry Reforming of Methane," Appl. Catal. A., 311, 94(2006). https://doi.org/10.1016/j.apcata.2006.06.010
  12. Valderrama, G., Goldwasser, M. R., de Navarro, C. U., Tatibouet, J. M., Barrault, J., Batiot-Dupeyrat, C. and Martinez, F., "Dry Reforming of Methane over Ni Perovskite Type Oxides," Catal. Today, 107-108, 785(2005). https://doi.org/10.1016/j.cattod.2005.07.010
  13. Sauvet, A. L. and Irvine, J. T. S., "Catalytic Activity for Steam Methane Reforming and Physical Characterisation of $La_{1-x}Sr_{x}Cr_{1-y}Ni_{y}O_{3-delta}$", Solid State Ionics, 167(1-2), 1(2004). https://doi.org/10.1016/j.ssi.2003.11.021
  14. Erri, P., Dinka, P. and Varma, A., "Novel Perovskite-based Catalysts for Autothermal JP-8 Fuel Reforming, " Chem. Eng. Sci., 61(16), 5328(2006). https://doi.org/10.1016/j.ces.2006.03.046
  15. Guo, J., Lou, H., Zhu, Y. and Zheng, X., "La-based Perovskite Precursors Preparation and its Catalytic Activity for $CO_{2}$ Refonning of $CH_{4}$", Mater. Lett., 57(28), 4450(2003). https://doi.org/10.1016/S0167-577X(03)00341-0
  16. Valderrama, G., Kiennemann, A. and Goldwasser, M. R., "Dry Reforming of $CH_{4}$ over Solid Solutions of $LaN_{1-x}Co_xO_{3}$", Catal. Today, 133, 142(2008).
  17. Sfeir, J., Buffat, P. A., Mockli, P., Xanthopoulos, N., Vasquez, R., Mathieu, H. J., Van herle, J. and Thampi, K. R., "Lanthanum Chromite Based Catalysts for Oxidation of Methane Directly on SOFC Anodes", J. Catal., 202(2), 229(2001). https://doi.org/10.1006/jcat.2001.3286
  18. Boukamp, B. A., "The Amazing Perovskite Anode," Nat. Mat., 2(5), 294(2003). https://doi.org/10.1038/nmat892
  19. Moon, J.-W., Lim, Y. H., Oh, Y.-K., Lee, M.-J., Choi, B.-H. and Hwang, H. J., "Polarization Resistance of $(Ba_{0.5}Sr_{0.5})_{0.99}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ Air Electrode Synthesized by Glycine-Nitrate Process", J. Korean Ceram. Soc., 42(12), 800(2005). https://doi.org/10.4191/KCERS.2005.42.12.800
  20. Yang, Y. J., Wen, T. L., Tu, H., Wang, D. Q. and Yang, J., "Characteristics of Lanthanum Strontium Chromite Prepared by Glycine Nitrate Process," Solid State Ionics, 135(1-4), 475(2000). https://doi.org/10.1016/S0167-2738(00)00402-1
  21. Mori, M., Hiei, Y. and Sammes, N. M., "Sintering Behavior of Ca- or Sr-doped $LaCrO_{3}$ Perovskites Including Second Phase of $AECrO_{4}$ (AE=Sr, Ca) in Air," Solid State Ionics, 135(1-4), 743 (2000). https://doi.org/10.1016/S0167-2738(00)00372-6
  22. Mori, M., Hiei, Y. and Sammes, N. M., "Sintering Behavior and Mechanism of Sr-doped Lanthanum Chromites with A Site Excess Composition in Air," Solid State Ionics, 123(1-4), 103(1999). https://doi.org/10.1016/S0167-2738(99)00097-1
  23. Barison, S., Battagliarin, M., Daolio, S., Fabrizio, M., Miorin, E., Antonucci, P. L., Candamano, S., Modafferi, V., Bauer, E. M., Bellitto, C. and Righini, G., "Novel $Au/La_{1-x}Sr_{x}MnO_{3}$ and $Au/La_{1-x}Sr_{x}CrO_{3}$ Composites: Catalytic Activity for Propane Partial Oxidation and Reforming," Solid State Ionics, 177(39-40), 3473 (2007). https://doi.org/10.1016/j.ssi.2006.10.005
  24. Pecchi, G., Reyes, P., Zamora, R., Cadus, L. E. and Fierro, J. L. G., "Effect of the Preparation Method on the Catalytic Activity of $La_{1-x}Ca_{x}FeO_{3}$ Perovskite-type Oxides," J. Solid State Chem., 181(4), 905(2008). https://doi.org/10.1016/j.jssc.2008.01.020
  25. Snoeck, J. W., Froment, G. F. and Fowles, M., "Filamentous Carbon Formation and Gasification: Thermodynamics, Driving Force, Nucleation, and Steady-state Growth", J. Catal., 169(1), 240(1997). https://doi.org/10.1006/jcat.1997.1634

Cited by

  1. (B=Mn, Ni, Fe, Ru) for High Temperature Water-gas Shift Reaction with Simuated Coal-derived Syngas vol.24, pp.6, 2013, https://doi.org/10.7316/KHNES.2013.24.6.543