DOI QR코드

DOI QR Code

란탄 기반 페롭스카이트 촉매를 이용한 악취 유발 물질의 저온 산화 반응

Low-temperature Oxidation of Odor Compounds over La-based Perovskite Catalyst

  • 방용주 (서울대학교 화학생물공학부 화학공정신기술연구소) ;
  • 서정길 (서울대학교 화학생물공학부 화학공정신기술연구소) ;
  • 이기춘 (웅진코웨이 R&D 센터) ;
  • 박찬정 (웅진코웨이 R&D 센터) ;
  • 김형태 (웅진코웨이 R&D 센터) ;
  • 송인규 (서울대학교 화학생물공학부 화학공정신기술연구소)
  • Bang, Yong-Ju (School of Chemical and Biological Engineering, Institute of Chemical Processes, College of Engineering, Seoul National University) ;
  • Seo, Jeong-Gil (School of Chemical and Biological Engineering, Institute of Chemical Processes, College of Engineering, Seoul National University) ;
  • Lee, Gi-Chun (Woongjin Coway R & D center, Seoul National University Research Center) ;
  • Park, Chan-Jung (Woongjin Coway R & D center, Seoul National University Research Center) ;
  • Kim, Hyung-Tae (Woongjin Coway R & D center, Seoul National University Research Center) ;
  • Song, In-Kyu (School of Chemical and Biological Engineering, Institute of Chemical Processes, College of Engineering, Seoul National University)
  • 발행 : 2011.04.30

초록

La을 기반으로 하는 다양한 페롭스카이트 촉매를 페치니(Pechini)법에 따라 제조하고, 이 촉매를 음식물 처리 과정에서 발생하는 악취 성분의 저온 산화 반응에 적용하여 효과적인 탈취가 이루어지도록 하였다. 배출 가스의 정량 및 정성 분석을 통하여 음식물 처리 시간에 따른 주요 악취 성분의 양을 조사하였다. 그리고 주요 악취 성분들로 구성된 표준 악취 시료는 산화 반응기의 반응물로 도입하였다. 먼저, 다양한 전이 금속 M이 치환된 La 기반 페롭스카이트 촉매($LaMO_{3}$: M=Cr, Mn, Fe, Co 및 Ni)를 제조하고 전이 금속 M의 영향을 알아보기 위해 악취 성분의 산화 반응에 적용한 결과, 테스트한 촉매 중에서 $LaNiO_3$ 촉매가 가장 우수한 촉매 활성을 보였다. 또한 촉매 활성을 증진시키기 위하여 Pt가 치환된 페롭스카이트 촉매($LaNi_{1-x}Pt_{x}O_{3}$: x=0, 0.03, 0.1 및 0.3)를 제조하였고, 이로부터 $LaNi_{0.9}Pt_{0.1}O_{3}$ 촉매가 가장 효율적인 촉매인 것을 알 수 있었다. 끝으로 저온 산화 반응에서의 페롭스카이트 촉매의 활성을 극대화하기 위하여 담지된 페롭스카이트 촉매($XLaNi_{0.9}Pt_{0.1}O_{3}/Al_{2}O_{3}$: X=페롭스카이트 함량(wt%), 0, 10, 20, 30, 40, 50 및 100)를 적용하였다. $XLaNi_{0.9}Pt_{0.1}O_{3}/Al_{2}O_{3}$ 촉매의 활성은 페롭스카이트 함량에 따라 화산형(Volcano-shaped) 곡선을 나타내었으며, 이 때 $20LaNi_{0.9}Pt_{0.1}O_{3}/Al_{2}O_{3}$ 촉매가 $180^{\circ}C$의 반응 온도에서 88.7%의 가장 높은 전환율을 보였다.

Various La-based perovskite catalysts were prepared by a Pechini method, and they were applied to the low-temperature oxidation of odor compounds exhausted from waste food treatment process for effective deodorization. Quantitative and qualitative analyses of exhausted gas were conducted to measure the amount of major odor compounds with respect to operation time. A standard odor sample composed of major odor compounds was then prepared for use as a feed for oxidation reaction system. Various transition metal(M)-substituted La-based perovskite catalysts ($LaMO_{3}$: M=Cr, Mn, Fe, Co, and Ni) were prepared and applied to the oxidation of odor compounds in order to investigate the $LaNiO_3$ catalyst showed the best catalytic performance. Pt-substituted perovskite catalysts ($LaNi_{1-x}Pt_{x}O_{3}$: x=0, 0.03, 0.1, and 0.3) were then prepared for enhancing the catalytic performance. It was found that $LaNi_{0.9}Pt_{0.1}O_{3}$ catalyst served as the most efficient catalyst. Supported perovskite catalysts ($XLaNi_{0.9}Pt_{0.1}O_{3}/Al_{2}O_{3}$: X=perovskite content(wt%), 0, 10, 20, 30, 40, 50, and 100) were finally applied for the purpose of maximizing the catalytic performance of perovskite catalyst in the low-temperature oxidation reaction. Catalytic performance of $XLaNi_{0.9}Pt_{0.1}O_{3}/Al_{2}O_{3}$ catalysts showed a volcano-shaped curve with respect to perovskite content. Among the catalysts tested, $20LaNi_{0.9}Pt_{0.1}O_{3}$/$Al_{2}O_{3}$ catalyst exhibited the highest conversion of odor compounds of 88.7% at $180^{\circ}C$.

키워드

참고문헌

  1. Lee, C. Y., Chung, J. S. and Shin, E. W., "Sorption Behavior of Acetic Acid onto Activated Carbons," Korean Chem. Eng. Res. (HWAHAK KONGHAK), 46(6), 1130-1134(2008).
  2. Das, D., Gaur, V. and Verma, N., "Removal of Volatile Organic Compound by Activated Carbon Fiber," Carbon, 42(14), 2949-2962(2004). https://doi.org/10.1016/j.carbon.2004.07.008
  3. Barbero, B. P., Gamboa, J. A. and Cadus, L. E., "Synthesis and Characterisation of $La_{1-x}Ca_{x}FeO_{3} $ Perovskite-type Oxide Catalysts for Total Oxidation of Volatile Organic Compounds," Appl. Catal. B: Environ., 65(1-2), 21-30(2006). https://doi.org/10.1016/j.apcatb.2005.11.018
  4. Spinicci, R., Tofanari, A., Faticanti, M., Pettiti, I. and Porta, P., "Hexane Total Oxidation on $LaMO_{3}$(M=Mn, Co, Fe) Perovskitetype Oxides," J. Mol. Catal. A: Chem., 176(1-2), 247-252(2001). https://doi.org/10.1016/S1381-1169(01)00264-3
  5. Lojewska, J., Kolodziej, A., Kapica, R., Knapik, A. and Tyczkowski, J., "In Search for Active Non-precious Metal Catalyst for VOC Combustion Evaluation of Plasma Deposited Co and Co/Cu Oxide Catalysts on Metallic Structured Carriers," Catal. Today, 1475, 594-598(2009).
  6. Pena, M. A. and Fierro, J. L. G., "Chemical Structures and Performance of Perovskite Oxides," Chem. Rev., 101, 1981-2017(2001). https://doi.org/10.1021/cr980129f
  7. Levasseur, B. and Kaliaguine, S., "Effect of the Rare Earth in the Perovskite-type Mixed Oxides $AMnO_{3}$(A=Y, La, Pr, Sm, Dy) as Catalysts in Methanol Oxidation," J. Solid State Chem., 181, 2953-2963(2008). https://doi.org/10.1016/j.jssc.2008.07.029
  8. Koponen, M. J., Suvanto, M., Pakkanen, T. A., Kallinen, K., Kinnunen, T.-J. J. and Harkonen, M., "Synthetic Studies of $ABB^{'}O_{3}$(A=La, Pr, Nd; B=Fe, Mn; B'=Pd, Pt) Perovskites," Solid State Sci., 7, 7-12(2005). https://doi.org/10.1016/j.solidstatesciences.2004.10.002
  9. Ciambelli, P., Cimino, S., Lisi, L., Faticanti, M., Minelli, G., Pettiti, I. and Porta, P., "La, Ca and Fe Oxide Perovskites: Preparation, Characterization, and Catalytic Properties for Methane Combustion," Appl. Catal. B: Environ., 33, 193-203(2001). https://doi.org/10.1016/S0926-3373(01)00163-1
  10. Musialik-Piotrowska, A. and Syczewska, K., "Combustion of Volatile Organic Compounds in Two-component Mixtures over Monolithic Perovskite Catalysts," Catal. Today, 59, 269-278(2000). https://doi.org/10.1016/S0920-5861(00)00293-5
  11. Klvana, D., Song, K. S. and Kirchnerova, J., "Catalytic Performance of $La_{0.66}Sr_{0.34}Co_{0.2}Fe_{0.8}O_{3} $ Perovskite in Propane Combustion: Effect of Preparation and Specific Surface Area," Korean J. Chem. Eng., 19(6), 932-939(2002). https://doi.org/10.1007/BF02707214
  12. Tak, Y. S., Lee, G. D., Lee, W. Y. and Lee, H.-I., "Total Oxidation of Propylene over Perovskite-type Oxide Catalysts," Korean Chem. Eng. Res. (HWAHAK KONGHAK), 26(6), 641-648(1988).
  13. Ponce, S., Pena, M. A. and Fierro, J. L. G., "Surface Properties and Catalytic Performance in Methane Combustion of Sr-substituted Lanthanum Manganites," Appl. Catal. B: Environ., 24, 193-205(2000). https://doi.org/10.1016/S0926-3373(99)00111-3
  14. Pechini, M. P., "Method of Preparing Lead and Alkaline Earth Titanates and Niobates and Coating Method Using the Same to Form a Capacitor," U. S. Patent No. 3, 330, 697(1967).
  15. Klvana., D., Vaillancourt, J., Kirchnerova, J. and Chaouki, J., "Combustion of Methane over $La_{0.66}Sr_{0.34}Ni_{0.3}Co_{0.7}O_{3}\;and\;La_{0.4}Sr_{0.6}Fe_{0.4}Co_{0.6}O_{3}$ Prepared by Freeze-drying," Appl. Catal. A: Gen., 109(2), 181-193(1994). https://doi.org/10.1016/0926-860X(94)80117-7
  16. Park, J.-R., Lee, D.-I., Jung, S.-H., Kim, T.-H., Sung, J.-S. and Song, K.-C., "Preparation of Perovskite-type Oxide $(La_{1-x}Sr_{x}Co_{1-y}Fe_{y}O_{3-\delta})$ Coating Solution by Sol-gel Method," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 43(6), 740-744(2005).
  17. Taguchi, H., Yamasaki, S., Itadani, A., Yosinaga, M. and Hirota, K., "CO Oxidation on Perovskite-type $LaCoO_{3}$ Synthesized Using Ethylene Glycol and Citric Acid," Catal. Commun., 9, 1913-1915 (2008). https://doi.org/10.1016/j.catcom.2008.03.015
  18. Choi, S. O. and Moon, S. H., "Performance of $La_{1-x}Ce_{x}Fe_{0.7}Ni_{0.3}O_{3}$ Perovskite Catalysts for Methane Steam Reforming," Catal. Today, 146, 148-153(2009). https://doi.org/10.1016/j.cattod.2009.02.023
  19. Nguyen, S. V., Szabo, V., Trong On, D. and Kaliaguine, S., "Mesoporous Silica Supported $LaCoO_{3}$ Perovskites as Catalysts for Methane Oxidation," Micropor. Mesopor. Mater., 54, 51-61(2002). https://doi.org/10.1016/S1387-1811(02)00340-2