DOI QR코드

DOI QR Code

혼성반도체로 제조된 염료감응형 태양전지의 전기화학적 특성

Electrochemical Characterization of Hybrid Semiconductor-Based Dye-Sensitized Solar Cells

  • 이성규 (충남대학교 정밀응용화학과) ;
  • 정의경 (충남대학교 정밀응용화학과) ;
  • 임지선 (충남대학교 정밀응용화학과) ;
  • 이영석 (충남대학교 정밀응용화학과)
  • Lee, Sung-Kyu (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University) ;
  • Jeong, Eui-Gyung (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University) ;
  • Im, Ji-Sun (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University) ;
  • Lee, Young-Seak (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University)
  • 발행 : 2011.04.30

초록

본 연구에서는, 전자의 재결합을 감소시켜 염료 감응형 태양전지의 효율을 향상시키고자 다른 에너지 준위를 갖는 $TiO_{2}$$V_{2}O_{5}$을 혼합하여 $TiO_{2}/V_{2}O_{5}$ 혼성반도체를 제조하였다. 또한 제조된 $TiO_{2}/V_{2}O_{5}$ 혼성반도체는 페인트 쉐이커를 이용하여 회쇄 후 염료 감응형 태양전지의 제조 및 전기화학적 특성 평가를 함으로써 $V_{2}O_{5}$ 혼합 및 회쇄 효과가 전지효율에 미치는 영향을 고찰하였다. I-V 곡선을 통하여 측정된 염료 감응형 태양전지의 효율은 $V_{2}O_{5}$ 혼합 및 회쇄 효과에 의하여 2.9에서 5.7%로, $TiO_{2}$ 염료 감응형 태양전지에 비하여 약 2배 증가하였다. 이러한 결과는 $TiO_{2}$의 전도대보다 낮은 전도대를 갖는 $V_{2}O_{5}$의 도입으로 효과적으로 전자를 FTO 유리에 전달하여, 전자가 염료 및 전해질과의 재결합을 감소하게 되어 에너지 전환효율이 증가된 것으로 여겨 진다. 또한, 임피던스 결과도 회쇄된 $TiO_{2}/V_{2}O_{5}$ 혼성 반도체의 효과를 나타내는 $TiO_{2}$/염료/전해질 계면의 저항감소를 보여 주었다.

In this study, the $TiO_{2}/V_{2}O_{5}$ hybrid semiconductors were prepared by mixing $TiO_{2}$ and $V_{2}O_{5}$, and a subsequent smash process to reduce the recombination of electron and improve the efficiency of solar cells. Dye-sensitized solar cells were constructed using the resultant hybrid semiconductor, and their electrochemical properties were also investigated. The photocurrent-voltage curve obtained with the cells indicated a significant increase in the efficiency from 2.9 to 5.7% by the factor of 2 compared to the result obtained only with $TiO_{2}$. It is believed that the introduction of $V_{2}O_{5}$ effectively transport electrons in the $TiO_{2}$ conduction band to FTO glass and suppress recombination with the dye and/or the electrolyte, thus yielding an efficient performance of the dye sensitized solar cell. The impedance values also indicated a decrease of resistance in the interface of $TiO_{2}$/dye/electrolyte supporting the constructive contributions of the smashed $TiO_{2}/V_{2}O_{5}$ hybrid semiconductors for the efficiency.

키워드

참고문헌

  1. Kim, G. S., Kim, Y. S., Kim, H. I., Seo, H. K., Yang, O. B. and Shi, H. S., "The Preparation and Property of Dye-sensitized solar cells using $TiO_{2}$, " Korean Chem. Eng. Res. (HWAHAK KONGHAK), 44(2), 179-186(2006).
  2. Nissfolk, J., Fredin, K., Simiyu, J., Hggman, L., Hagfeldt, A. and Boschloom, G., "Interpretation of Small-modulation Photocurrent Transients in Dye-sensitized Solar Cells : A Film Thickness Study," J. Electroanal. Chem., 646(1-2), 91-99(2010). https://doi.org/10.1016/j.jelechem.2010.03.016
  3. Kashyout, A. B., Soliman, M. and Fathy, M., "Effect of Preparation Parameters on the Properties of $TiO_{2}$ Nanoparticles for Dye-sensitized Solar Cells," Renew. Energy, 35(12), 2914-2920 (2010). https://doi.org/10.1016/j.renene.2010.04.035
  4. Lee, D. Y. and Chung, C. W., "Effect of Indium Zinc Oxide Transparent Electrode on Power Conversion Efficiency of Flexible Dye-Sensitized Solar Cells," Korean Chem. Eng. Res. (HWAHAK KONGHAK), 47(1), 105-110(2009).
  5. Park, N. G., "Light Management in Dye-sensitized Solar Cell," Korean J. Chem. Eng., 27(2), 375-384(2010). https://doi.org/10.1007/s11814-010-0112-z
  6. Chen, H. W., Hsu, C. Y., Chen, J. G., Lee, K. M., Wang, C. C., Huang, K. C. and Ho, K. C., "Plastic Dye-sensitized Photo-supercapacitor Using Electrophoretic Deposition and Compression Methods," J. Power Sources, 195(18), 6225-6231(2010). https://doi.org/10.1016/j.jpowsour.2010.01.009
  7. Yang, C. H., Chen, H. L., Chen, C. P., Liao, S. H., Hsiao, H. A., Chuang, Y. Y., Hsu, H. S., Wang, T. L., Shieh, Y. T., Lin, L. Y. and Tsai, Y. C., "Electrochemical Polymerization Effects of Triphenylamine- based Dye on $TiO_{2}$ Photoelectrodes in Dye-sensitized Solar Cells," J. Electroanal. Chem., 631(1-2), 43-51(2009). https://doi.org/10.1016/j.jelechem.2009.03.010
  8. Waita, S. M., Aduda, B. O., Mwabora, J. M., Granqvist, C. G., Lindquist, S. E., Niklasson, G. A., Hagfeldt, A. and Boschloo, G., "Electron Transport and Recombination in Dye-sensitized Solar Cells Fabricated From Obliquely Sputter Deposited and Thermally Annealed $TiO_{2}$ Films," J. Electroanal. Chem., 605(2), 151- 156(2007). https://doi.org/10.1016/j.jelechem.2007.04.001
  9. Dhungel, S. K. and Park, J. G., "Optimization of Paste Formulation for $TiO_{2}$ Nanoparticles with Wide Range of Size Distribution For Its Application in Dye-sensitized Solar Cells, " Renew. Energy, 35(12), 2776-2780(2010). https://doi.org/10.1016/j.renene.2010.04.031
  10. Yoo, B., Kim, K. J., Bang, S. Y., Ko, M. J., Kim, K. and Park, N. G., "Chemically Deposited Blocking Layers on FTO Substrates : Effect of Precursor Concentration on Photovoltaic Performance of Dye-sensitized Solar Cells", J. Electroanal. Chem., 638(1), 161-166(2010). https://doi.org/10.1016/j.jelechem.2009.10.005
  11. Paulsson, H., Kloo, L., Hagfeldt, A. and Boschloo, G., "Electron Transport and Recombination in Dye-sensitized Solar Cells with Ionic Liquid Electrolytes," J. Electroanal. Chem., 586(1), 56-61 (2006). https://doi.org/10.1016/j.jelechem.2005.09.011
  12. Parvez, M. K., Yoo, G. M., Kim, J. H., Ko, M. J. and Kim, S. R., "Comparative Study of Plasma and Ion-beam Treatment to Reduce the Oxygen Vacancies in $TiO_{2}$ and Recombination Reactions in Dye-sensitized Solar Cells," Chem. Phys. Lett., 495(1-3), 69-72(2010). https://doi.org/10.1016/j.cplett.2010.06.038
  13. Villanueva, C. J., Oskam, G. and Anta, J. A., "A Simple Numerical Model for the Charge Transport and Recombination Properties of Dye-sensitized Solar Cells : A Comparison of Transportlimited and Transfer-limited Recombination," Sol. Energy Mater. Sol. Cells, 94(1), 45-50(2010). https://doi.org/10.1016/j.solmat.2009.06.004
  14. Meng, L., Ren, T. and Li, C., "The Control of the Diameter of the Nanorods Prepared by dc Reactive Magnetron Sputtering and the Applications for DSSC," Appl. Surf. Sci., 256(11), 3676-3682 (2010). https://doi.org/10.1016/j.apsusc.2009.12.169
  15. Hwang, K. J., Yoo, S. J., Jung, S. H., Kim, S. I. and Lee, J. W., "Preparation of $Al_{2}O_{3}$-coated $TiO_{2}$ Electrode for Recombination Blocking of Photoelectron in Dye-Sensitized Solar Cells," Appl. Chem. Eng., 21(2), 162-168(2010).
  16. Lee, Y. and Kang, M., "The Optical Properties of Nanoporous Structured Titanium Dioxide and the Photovoltaic Efficiency on DSSC," Mater. Chem. Phys., 122(1), 284-289(2010). https://doi.org/10.1016/j.matchemphys.2010.02.050
  17. Wu, J., Xie, G., Lin, J., Lan, Z., Huang, M. and Huang, Y., "Enhancing Photoelectrical Performance of Dye-sensitized Solar Cell by Doping with Europium-doped Yttria Rare-earth Oxide," J. Power Sources, 195(19), 6937-6940(2010). https://doi.org/10.1016/j.jpowsour.2010.04.081
  18. Tang, Z., Wu, J., Li, Q., Lan, Z., Fan, L., Lin, J. and Huang, M., "The preparation of Poly(glycidyl acrylate) Polypyrrole Gel-electrolyte and Its Application in Dye-sensitized Solar Cells," Electrochim. Acta, 55(17), 4883-4888(2010). https://doi.org/10.1016/j.electacta.2010.03.081
  19. Lee, Y., Chae, J. and Kang, M., "Comparison of the Photovoltaic Efficiency on DSSC for Nanometer Sized $TiO_{2}$ Using a Conventional Sol-gel and Solvothermal Methods," J. Ind. Eng. Chem., 16(4), 609-617(2010). https://doi.org/10.1016/j.jiec.2010.03.008
  20. Lu, L., Li, R., Fan, K. and Peng, T., "Effects of Annealing Conditions on the Photoelectrochemical Properties of Dye-sensitized Solar Cells Made with ZnO Nanoparticles," Sol. Energy, 84(5), 844-853(2010). https://doi.org/10.1016/j.solener.2010.02.010
  21. Chou, C. S., Yang, R. Y., Yeh, C. K. and Lin, Y. J., "Preparation of $TiO_{2}$/Nano-metal Composite Particles and Their Applications in Dye-sensitized Solar Cells," Powder Technol., 194(1-2), 95-105(2009). https://doi.org/10.1016/j.powtec.2009.03.039
  22. Dupuy, L., Haller, S., Rousset, J., Donsanti, F., Guillemoles, J. F., Lincot, D. and Decker, F., "Impedance Measurements of Nanoporosity in Electrodeposited ZnO Films for DSSC," Electrochem. Commun., 12(5), 697-699(2010). https://doi.org/10.1016/j.elecom.2010.03.009
  23. Mikroyannidis, J. A., Stylianakis, M. M., Roy, M. S., Suresh, P. and Sharma, G. D., "Synthesis, Photophysics of Two New Perylene Bisimides and Their Photovoltaic Performances in Quasi Solid State Dye-sensitized Solar Cells," J. Power Sources, 194(2), 1171-1179(2009). https://doi.org/10.1016/j.jpowsour.2009.06.002
  24. Gagliardi, S., Giorgi, L., Giorgi, R., Lisi, N., Makris, T. D., Salernitano, E. and Rufoloni, A., "Impedance Analysis of Nanocarbon DSSC Electrodes," Superlattices Microstruct., 46(1-2), 205-208(2009). https://doi.org/10.1016/j.spmi.2009.02.002
  25. Kim, H. J., Lee, J. G., Seo, H., Son, M. K., Kim, J. K., Prabakar, K. and Shin, I., "Electrochemical Impedance Spectroscopy Analysis on the Dye-sensized Solar Cell with Different $TiO_{2}$ thicknesses," Trans. KIEE. 58(12), 2425-2430(2009).
  26. Lin, L. Y., Lee, C. P., Vittal, R. and Ho, K. C., "Selective Conditions for the Fabrication of a Flexible Dye-sensitized Solar Cell with Ti/$TiO_{2}$ Photoanode, " J. Power Sources, 195(13), 4344-4349 (2010). https://doi.org/10.1016/j.jpowsour.2010.01.031

피인용 문헌

  1. vol.2013, pp.1687-4129, 2013, https://doi.org/10.1155/2013/184345
  2. Photoelectrode Synthesized Using Basic Catalyst vol.26, pp.10, 2013, https://doi.org/10.4313/JKEM.2013.26.10.736
  3. Performance of Crystalline Si Solar Cells with Temperature Controlled by a Thermoelectric Module vol.27, pp.7, 2015, https://doi.org/10.6110/KJACR.2015.27.7.375