Derivations of Upper and Lower Bounds of the Expected Busy Periods for a Controllable M/G/1 Queueing Model Operating Under the Triadic Max(N, T, D) Policy

삼변수 Max(N, T, D) 운용방침이 적용되는 조정가능한 M/G/1 대기모형의 busy period 기대값의 상한과 하한 유도

  • Rhee, Hahn-Kyou (Department of Industrial and Management Engineering Hannam University)
  • 이한교 (한남대학교 산업경영공학과)
  • Received : 2011.03.07
  • Accepted : 2011.03.21
  • Published : 2011.03.31

Abstract

Using the known result of the expected busy period for a controllable M/G/1 queueing model operating under the triadic Max (N, T, D) policy, its upper and lower bounds are derived to approximate its corresponding actual value. Both bounds are represented in terms of the expected busy periods for the dyadic Min (N, T), Min (N, D) and Min (T, D) and simple N, T and D operating policies. All three input variables N, T and D are equally contributed to construct such bounds for better estimation.

Keywords

References

  1. Balachandran K. R. and Tijms, H.; "On the D-policy for the M/G/1 Queue," Management Science, 9 : 1073-1076, 1975.
  2. Conolly, B.; Lecture Notes on Queueing Systems, Halsted, NY. 1975.
  3. Gakis, H. K., Rhee and Sivazlian B. D.; "Distributions and First Moments of the Busy and Idle Periods in Controllable M/G/1 Queueing Models with Simple and Dyadic Policies," Stochastic Analysis and Applications, 13(1) : 47-81, 1995. https://doi.org/10.1080/07362999508809382
  4. Heyman, D.; "The T-policy for the M/G/1 Queue," Management Science, 23(7) : 775-778, 1977. https://doi.org/10.1287/mnsc.23.7.775
  5. Kleinrock, L.; Queueing Systems, 1 : Theory, John Wiley and Sons, NY. 1975.
  6. Rhee, H. K.; "Development of a New Methodology to find the Expected Busy Period for Controllable M/G/1 Queueing Models Operating under the Multi-variable Operating Policies : Concepts and Application to the Dyadic Policies," 대한산업공학회지, 23(4) : 729-739, 1997.
  7. Rhee, H. K.; "조정가능한 대기모형에 이변수 운용방침 (Dyadic Policy)이 적용될 때 busy period의 기대값의 수리적 분석", 한남대학교논문집, 32 : 141-153, 2002.
  8. Rhee, H. K.; "조정가능한 M/G/1 대기모형에 삼변수 Min(N, T, D) 운용방침이 적용될 때 busy period의 기대 값의 상한과 하한 유도", 한국산업경영시스템학회지, 33(2) : 97-104, 2010.
  9. Rhee, H. K.; "Busy period 기대값을 사용하여 삼변수 Min(N, T, D)와 Max(N, T, D) 운용방침사이의 관계식 설정", 한국산업경영시스템학회지, 33(3) : 63-70, 2010.
  10. Rhee, H. K. and H. S. Oh.; "삼변수 운용방침이 적용 되는 M/G/1 대기모형에서 가상확률밀도함수를 이용 한 busy period의 기대값 유도", 한국산업경영시스템 학회지, 30(2) : 51-57, 2007.
  11. Rhee, H. K. and H. S. Oh.; "가상확률밀도함수를 사용하여 Max(N, T, D) 운용방침이 적용되는 조정가능한 M/G/1 대기모의 busy period의 기대값 유도", 한국산업경영시스템학회지, 31(4) : 86-92, 2007.
  12. Rhee, H. K. and Sivazlian, B. D.; "Distribution of the Busy Period in a Controllable M/M/2 Queue Operating under the Triadic(0, K, N, M) Policy," Journal of Applied Probability, 27 : 425-432, 1990. https://doi.org/10.2307/3214662
  13. Teghem, J.; "Control of the Service Process in a Queueing System," European Journal of Operational Research, 23 : 141-158, 1986. https://doi.org/10.1016/0377-2217(86)90234-1
  14. Yadin, M. and Naor, P.; "Queueing System with Removable Service Station," Operational Research Quarterly, 14 : 393-405, 1963 https://doi.org/10.1057/jors.1963.63