• Title/Summary/Keyword: Expected Busy Period

Search Result 21, Processing Time 0.027 seconds

Derivation of the Expected Busy Period for the Controllable M/G/1 Queueing Model Operating under the Triadic Policy using the Pseudo Probability Density Function (삼변수운용방침이 적용되는 M/G/1 대기모형에서 가상확률밀도함수를 이용한 busy period의 기대값 유도)

  • Rhee, Hahn-Kyou;Oh, Hyun-Seung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.30 no.2
    • /
    • pp.51-57
    • /
    • 2007
  • The expected busy period for the controllable M/G/1 queueing model operating under the triadic policy is derived by using the pseudo probability density function which is totally different from the actual probability density function. In order to justify the approach using the pseudo probability density function to derive the expected busy period for the triadic policy, well-known expected busy periods for the dyadic policies are derived from the obtained result as special cases.

Upper and Lower Bounds of the Expected Busy Period for the Triadic Med(N, T, D) Policy (삼변수 Med(N, T, D) 운용방침에 따른 Busy Period 기대값의 상한과 하한 유도)

  • Rhee, Hahn-Kyou
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.36 no.1
    • /
    • pp.58-63
    • /
    • 2013
  • Using the known result of the expected busy period for the triadic Med (N, T, D) operating policies applied to a controllable M/G/1 queueing model, its upper and lower bounds are derived to approximate its corresponding actual values. Both bounds are represented in terms of the expected busy periods for the dyadic Min (N, T), Min (N, D) and Min (T, D) or Max (N, T), Max (N, D) and Max (T, D) with the simple N, T and D operating policies without using any other types of triadic operating policies such as Min (N, T, D) and Max (N, T, D) policies. All three input variables N, T and D are equally contributed to construct such bounds for estimation of the expected busy period.

Development of the Most Generalized Form of the Triadic Operating Policy and Derivation of its Corresponding Expected Busy Period (가장 일반화된 형태의 삼변수 운용방침 개발과 그에 따른 Busy Period 기대값 유도)

  • Rhee, Hahn-Kyou;Oh, Hyun-Seung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.32 no.4
    • /
    • pp.161-168
    • /
    • 2009
  • The most generalized form of the triadic operating policy for an M/G/1 queueing model is developed. It consists of three simple N, T and D operating policies and has a peculiar structure possessing concepts of dyadic policies. Using the concept of the pseudo probability density function of the busy period, its expected busy period for the controllable M/G/1 queueing model is derived. Since the obtained result is the most generalized form the triadic polity, the expected busy periods for all known dyadic policies are recovered as special cases from it.

Derivation of the Expected Busy Period U sing its Pseudo Probability Density Function for a Controllable M/G/l Queueing Model Operating Under the Max (N, T, D) Policy (가상확률밀도함수를 사용하여 Max(N, T, D) 운5방침이 적용되는 조정가능한 M/G/1 대기모형의 busy period의 기대값 유도)

  • Rhee, Hahn-Kyou;Oh, Hyun-Seung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.31 no.4
    • /
    • pp.86-92
    • /
    • 2008
  • The expected busy period for the controllable M/G/1 queueing model operating under the triadic Max (N, T, D) policy is derived by using a new concept so called "the pseudo probability density function." In order to justify the proposed approaches for the triadic policy, well-known expected busy periods for the dyadic policies are recovered from the obtained result as special cases.

Derivations of Upper and Lower Bounds of the Expected Busy Periods for a Controllable M/G/1 Queueing Model Operating Under the Triadic Max(N, T, D) Policy (삼변수 Max(N, T, D) 운용방침이 적용되는 조정가능한 M/G/1 대기모형의 busy period 기대값의 상한과 하한 유도)

  • Rhee, Hahn-Kyou
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.34 no.1
    • /
    • pp.67-73
    • /
    • 2011
  • Using the known result of the expected busy period for a controllable M/G/1 queueing model operating under the triadic Max (N, T, D) policy, its upper and lower bounds are derived to approximate its corresponding actual value. Both bounds are represented in terms of the expected busy periods for the dyadic Min (N, T), Min (N, D) and Min (T, D) and simple N, T and D operating policies. All three input variables N, T and D are equally contributed to construct such bounds for better estimation.

Derivations of Upper and Lower Bounds of the Expected Busy Periods for the Triadic Min(N, T, D) Operating Policy applied to a Controllable M/G/1 Queueing Model (조정가능한 M/G/1 대기모형에 삼변수 Min(N, T, D) 운용방침이 적용될 때 busy period 기댓값의 상한과 하한 유도)

  • Rhee, Hahn-Kyou
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.33 no.2
    • /
    • pp.97-104
    • /
    • 2010
  • Using the known result of the expected busy period for the triadic Min (N, T, D) operating policy applied to a controllable M/G/1 queueing model, its upper and lower bounds are derived to approximate its corresponding actual value. Both bounds are represented in terms of the expected busy periods for the dyadic Min (N, T), Min (N, D) and Min (T, D) and simple N, T and D operating policies. All three input variables N, T and D are equally contributed to construct such bounds for better approximations.

Development of a New Methodology to find the Expected Busy Periods for Controllable M/G/1 Queueing Models Operating under the Multi-variable Operating Policies: Concepts and applications to the dyadic policies

  • Rhee, Hahn-Kyou
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.23 no.4
    • /
    • pp.729-739
    • /
    • 1997
  • In this paper, steady-state controllable M/G/1 queueing systems operating under the dyadic policies are considered. A new method to obtain the expected busy period when the D-policy is involved in system operation, is developed. This new method requires derivation of so called 'the pseudo probability density function' of the busy period for the system under consideration, which is completely different from its actual probability density function. However, the proposed pseudo probability density function does generate the correct expected busy period through simple procedures.

  • PDF

Analysis of a Controllable Queueing Model Operating under the Alternating Operating Policies (변동 운용방침이 적용되는 조정가능한 대기모형 분석)

  • Rhee, Hahn-Kyou
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.1
    • /
    • pp.81-90
    • /
    • 2016
  • Different from general operating policies to be applied for controllable queueing models, two of three well-known simple N, T and D operating policies are applied alternatingly to the single server controllable queueing models, so called alternating (NT), (ND) and (TD) policies. For example, the alternating (ND) operating policy is defined as the busy period is initiated by the simple N operating policy first, then the next busy period is initiated by the simple D operating policy and repeats the same sequence after that continuously. Because of newly designed operating policies, important system characteristic such as the expected busy and idle periods, the expected busy cycle, the expected number of customers in the system and so on should be redefined. That is, the expected busy and idle periods are redefined as the sum of the corresponding expected busy periods and idle periods initiated by both one of the two simple operating policies and the remaining simple operating policy, respectively. The expected number of customers in the system is represented by the weighted or pooled average of both expected number of customers in the system when the predetermined two simple operating policies are applied in sequence repeatedly. In particular, the expected number of customers in the system could be used to derive the expected waiting time in the queue or system by applying the famous Little's formulas. Most of such system characteristics derived would play important roles to construct the total cost functions per unit time for determination of the optimal operating policies by defining appropriate cost elements to operate the desired queueing systems.

Construction of a Relation Between the Triadic Min(N, T, D) and Max(N, T, D) Operating Policies Based on their Corresponding Expected Busy Periods (Busy Period 기대값을 사용하여 삼변수 Min(N, T, D)와 Max(N, T, D) 운용방침사이의 관계식 설정)

  • Rhee, Hahn-Kyou
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.33 no.3
    • /
    • pp.63-70
    • /
    • 2010
  • Based on the known results of the expected busy periods for the triadic Min (N, T, D) and Max (N, T, D) operating policies applied to a controllable M/G/1 queueing model, a relation between them is constructed. Such relation is represented in terms of the expected busy periods for the simple N, T and D, and the dyadic Min (N, T), Min (T, D) and Min (N, D) operating policies. Hence, if any system characteristics for one of the two triadic operating policies are known, unknown corresponding system characteristics for the other triadic operating policy could be obtained easily from the constructed relation.

Decomposition of the Most Generalized Triadic Operating Policy Using its Corresponding Expected Busy Period (Busy Period 기대값을 사용하여 가장 일반화된 삼변수 운용방침의 분석)

  • Rhee, Hahn-Kyou
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.34 no.4
    • /
    • pp.162-168
    • /
    • 2011
  • The most generalized form of the triadic operating policy for a controllable M/G/I queueing model is analyzed to obtain fundamental relations among the other forms of operating policies based on its corresponding expected busy period. Since it consists of three decision variables N, T and D, it could be possible to decompose into the simple, the dyadic and other forms of the triadic operating policies. The procedures to decompose the most generalized triadic policy into other forms of operating policies could provide a general methodology to identify each element associated with it.