DOI QR코드

DOI QR Code

SiGe Alloys for Electronic Device Applications

실리콘-게르마늄 합금의 전자 소자 응용

  • Lee, Seung-Yun (Division of Advanced Materials Engineering, Hanbat National University)
  • 이승윤 (한밭대학교 신소재공학부)
  • Received : 2010.11.04
  • Accepted : 2011.01.19
  • Published : 2011.03.30

Abstract

The silicon-germanium (SiGe) alloy, which is compatible with silicon semiconductor technology and has a smaller band gap and a lower thermal conductivity than silicon, has been used to fabricate electronic devices such as transistors, photodetectors, solar cells, and thermoelectric devices. This paper reviews the application of SiGe alloys to electronic devices and related technical issues. Since the SiGe alloy comprises germanium whose band gap is smaller than silicon, its band gap is also smaller than that of silicon irrespective of the ratio of silicon to germanium. This narrow band gap of SiGe enables the base thickness of bipolar transistors to decrease without a loss in current gain so that it is possible to improve the speed of bipolar transistors by adopting the SiGe-base. In addition, the conversion efficiency of solar cells is enhanced by the absorption of long-wavelength light in the SiGe absorption layer. Phonon scattering caused by the irregular distribution of alloying elements induces the lower thermal conductivity of SiGe than those of pure silicon and germanium. Because a thin film layer with a low thermal conductivity suppresses thermal conduction through a thermal sink, the SiGe alloy is considered to be a promising material for silicon-based thermoelectric systems.

실리콘(Si)에 비해 상대적으로 밴드 갭이 작고, 열전도도가 낮으며, 기존의 Si 반도체 공정 기술과 호환이 가능한 실리콘-게르마늄(SiGe) 합금은 트랜지스터, 광수신 소자, 태양전지, 열전 소자 등 다양한 전자 소자에서 사용되고 있다. 본 논문에서는 SiGe 합금이 전자소자에 응용되는 원리 및 응용과 관련된 기술적인 논제들을 고찰한다. Si에 비해 밴드 갭이 작은 게르마늄(Ge)이 그 구성 원소인 SiGe 합금의 밴드 갭은 Si과 Ge의 분률과 상관없이 항상 Si의 밴드 갭 보다 작다. 이러한 SiGe의 작은 밴드 갭은 전류 이득의 손실 없이 베이스 두께를 감소시키는 것을 가능하게 하여 바이폴라 트랜지스터의 동작속도를 향상시킨다. 또한, Si이 흡수하지 못하는 장파장 대의 빛을 SiGe이 흡수하여 광전류를 생성하게 함으로써 태양전지의 변환효율을 증가시킨다. 질량이 서로 다른 Si 및 Ge 원소의 불규칙적인 분포에 의해 발생하는 포논 산란 효과 때문에 SiGe 합금은 순수한 Si 및 Ge과 비교할 때 낮은 열전도도를 갖는다. 낮은 열전도도 특성의 SiGe 합금은 전자 소자 구조 내에서의 열 손실을 억제하는데 효과가 있으므로 Si 반도체 공정 기반의 열전 소자의 구성 물질로서 활용이 기대된다.

Keywords

References

  1. R. Quinsey, IEEE 2007 Compound Semiconductor Integrated Circuit Symposium 1 (2007).
  2. Q. H. Fan, C. Chen, X. Liao, X. Xiang, S. Zhang, W. Ingler, N. Adiga, Z. Hu, X. Cao, W. Du, and X. Deng, Sol. Energy Mater. Sol. Cells 94, 1300 (2010). https://doi.org/10.1016/j.solmat.2010.03.006
  3. M. Strasser, R. Aigner, M. Franosch, and G. Wachutk, Sensor. Actuat. A 97-98, 535 (2002). https://doi.org/10.1016/S0924-4247(01)00815-9
  4. D. L. Harame, J. H. Comfort, J. D. Cressler, E. F. Crabbe, J. Y. -C. Sun, B. S. Meyerson, and T. Tice, IEEE Trans. Electron Devices 42, 455 (1995). https://doi.org/10.1109/16.368039
  5. C. Lei, R. Ying, and L. Zong-sheng, Second International Conference on Networks Security, Wireless Communications and Trusted Computing, 486 (2010).
  6. D. L. Harame et al., Appl. Surf. Sci. 224, 9 (2004). https://doi.org/10.1016/j.apsusc.2003.08.086
  7. L. Pavesi and D. Lockwood, Silicon Photonics: Topics in Applied Physics Vol.94 (Springer-Verlag, Berlin, 2004) p.1.
  8. S. -Y. Lee, K. -J. Choi, S. -O. Ryu, S. -M. Yoon, N. -Y. Lee, Y. -S. Park, S. -H. Kim, S. -H. Lee, and B. -G. Yu, Appl. Phys. Lett. 89, 053517 (2006). https://doi.org/10.1063/1.2335363
  9. B. Abeles, Phys. Rev. 131, 1906 (1963). https://doi.org/10.1103/PhysRev.131.1906
  10. J. D. Cressler, IEEE 2008 Custom Intergrated Circuits Conference, 75 (2008).
  11. S. S. Iyer, G. L. Patton, J. M. C. Stork, B. S. Meyerson, and D. L. Harame, IEEE Trans. Electron Devices 36, 2043 (1989). https://doi.org/10.1109/16.40887
  12. S. Wolf, Silicon Processing of the VLSI Era Vol.2 (Lattice Press, Sunset Beach, 1990) p.471.
  13. U. Konig and H. Dambkes, Solid-State Electron. 38, 1595 (1995). https://doi.org/10.1016/0038-1101(95)00064-Z
  14. J. Cho, S. Kim, S. Hwangboe, J. Janng, H. Choi, and M. Jeon, J. Korean Vacuum Soc. 18, 352 (2008).
  15. X. Deng, X. Cao, Y. Ishikawa, W. Du, X. Yang, C. Das, and A. Vijh, Conference Record of IEEE 4th World Conference on Photovoltaic Energy Conversion Vol. 2, 1461 (2006).
  16. S. -Y. Lee, Y. S. Park, S. -M. Yoon, S. -W. Jung, J. Lee, and B. -G. Yu, Microelectron. Eng. 85, 2342 (2008). https://doi.org/10.1016/j.mee.2008.09.022
  17. R. M. Rose, L. A. Shepard, and J. Wulff, The Structure and Properties of Materials Vol. IV, p.167 (1966).
  18. D. D. L. Wijngaards and R. F. Wolffenbuttel, IEEE Trans. Electron Devices 52, 1014 (2005). https://doi.org/10.1109/TED.2005.846315
  19. N. S. Hudak and G. G. Amatucci, J. Appl. Phys. 103, 101301 (2008). https://doi.org/10.1063/1.2918987
  20. P. V. Gerwen, T. Slater, J.B. Chrvrier, K. Baert, and R. Mertens, Sens. Actuators A 53, 325 (1996). https://doi.org/10.1016/0924-4247(96)80156-7
  21. G. J. Snyder, J. R. Lim, C. -K. Huang, and J. -P. Fleurial, Nat. Mater. 2, 528 (2003). https://doi.org/10.1038/nmat943
  22. S. Ghamaty, N. Elsner, and J. Bass, 9th Diesel Engine Emissions Reduction Conference, 104 (2003).
  23. A. Fox et al., IEEE International Electron Devices Meeting, 1 (2008).
  24. S. Van Huylenbroeck, A. Sibaja-Hernandez, R. Venegas, S. You, G. Winderickx, D. Radisic, W. Lee, P. Ong, T. Vandeweyer, N. D. Nguyen, K. De Meyer, and S. Decoutere, IEEE Bipolar/BiCMOS Circuits and Technology Meeting, 5 (2009). https://doi.org/10.1109/BIPOL.2009.5314244
  25. D. C. Howard, L. Xiangtao, and J. D. Cressler, IEEE Bipolar/BiCMOS Circuits and Technology Meeting, 55 (2009). https://doi.org/10.1109/BIPOL.2009.5314152
  26. M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, Prog. Photovolt: Res. Appl. 17, 320 (2009). https://doi.org/10.1002/pip.911
  27. Q. H. Fan, X. Liao, X. Xiang, C. Chen, G. Hou, X. Cao, and X. Deng, J. Phys. D: Appl. Phys. 43, 145101 (2010). https://doi.org/10.1088/0022-3727/43/14/145101
  28. X. Xu et al., 5th World Conference on Photovoltaic Energy Conversion, 2783 (2010).
  29. G. Joshi, H. Lee, Y. Lan, X. Wang, G. Zhu, D. Wang, R. Gould, D. Cuff, M. Tang, M. Dresselhaus, G. Chen, and Z. Ren, Nano Lett. 8, 4670 (2008). https://doi.org/10.1021/nl8026795
  30. X. W. Wang, H. Lee, Y. Lan, G. Zhu, G. Joshi, D. Wang, J. Yang, A. Muto, M. Tang, J. Klatsky, S. Song, M. Dresselhaus, G. Chen, and Z. Ren, Appl. Phys. Lett. 93, 193121 (2008). https://doi.org/10.1063/1.3027060

Cited by

  1. Integrated IR Photo Sensor for Display Application vol.29, pp.11, 2012, https://doi.org/10.7736/KSPE.2012.29.11.1164
  2. Long-Term Performance of Amorphous Silicon Solar Cells with Stretched Exponential Defect Kinetics and AMPS-1D Simulation vol.21, pp.4, 2012, https://doi.org/10.5757/JKVS.2012.21.4.219