References
-
G. Bao and S. Ding, Invariance properties of
$L^{\varphi}({\mu})$ -domains under some mappings, J. Math. Anal. Appl., 259(2001), 241-252. https://doi.org/10.1006/jmaa.2001.7446 -
S. Ding and C. A. Nolder,
$L^{s}({\mu})$ -averaging domains, J. Math. Anal. Appl., 283(2003), 85-99. https://doi.org/10.1016/S0022-247X(03)00216-6 -
F. W. Gehring, The
$L^p$ -integrability of partial derivatives of a quasiconformal mapping, Acta Math., 130(1973), 265-277. https://doi.org/10.1007/BF02392268 - J. Hogan, C. Li, A. McInton and K. Zhang, Global higher integrability of Jacobians on bounded domains, Ann. Inst. H.Poincare Anal., 17(2000), 193-217. https://doi.org/10.1016/S0294-1449(00)00108-6
- T. Iwaniec and C. Sbordone, On the integrability of the Jacobian under minimal hypotheses, Arch. Rational Mech. Anal., 119(1992), 129-143. https://doi.org/10.1007/BF00375119
- T. Iwaniec and S. Ding, Global estimates for the Jacobians of orientation-preserving mappings, Compu. Math. Appl., 50(2005), 707-718. https://doi.org/10.1016/j.camwa.2005.04.014
- T. Iwaniec, G. Martin, Geometric function theory and nonlinear analysis, Clarendon Press, Oxford, 2001.
-
S. Muller, Higher integrability of determinants and week convergence in
$L^1$ , J. Reine Angew. Math., 412(1990), 20-34. - C. A. Nolder, Hardy-Littlewood theorems for A-harmonic tensors, Illinois J. Math., 43(1999), 613-631.