DOI QR코드

DOI QR Code

BCK- lters Based on Fuzzy Points with Threshold

  • Jun, Young-Bae (Department of Mathematics Education, Gyeongsang National University) ;
  • Song, Seok-Zun (Department of Mathematics, Jeju National University) ;
  • Roh, Eun-Hwan (Department of Mathematics Education, Chinju National University of Education)
  • Received : 2010.06.15
  • Accepted : 2010.12.27
  • Published : 2011.03.31

Abstract

The notions of ($\overline{\in}$, $\overline{\in}{\vee}\overline{qk}$)-fuzzy BCK-filters and fuzzy BCK-filters with thresholds are introduced, and several related properties are investigated. Characterizations of such notions are displayed, and implication-based fuzzy BCK-filters are discussed.

Keywords

References

  1. S. K. Bhakat and P. Das, On the de nition of a fuzzy subgroup, Fuzzy Sets and Systems 51(1992), 235-241. https://doi.org/10.1016/0165-0114(92)90196-B
  2. S. K. Bhakat and P. Das, (${\in},{\in}{\vee}$q)-fuzzy subgroup, Fuzzy Sets and Systems 80(1996), 359-368. https://doi.org/10.1016/0165-0114(95)00157-3
  3. Y. B. Jun, On ${\alpha},{\beta}$fuzzy subalgebras of BCK/BCI-algebras, Bull. Korean Math. Soc. 42(2005), 703-711. https://doi.org/10.4134/BKMS.2005.42.4.703
  4. Y. B. Jun, Fuzzy subalgebras of type (${\alpha},{\beta}$) in BCK/BCI-algebras, Kyungpook Math. J. 47(2007), 403-410.
  5. Y. B. Jun, Generalizations of (${\in},{\in}{\vee}$q)-fuzzy subalgebras in BCK/BCI-algebras, Comput. Math. Appl. (to appear).
  6. Y. B. Jun, New types of fuzzy BCK-fiters, Honam Math. J. 31(2009), 157-166. https://doi.org/10.5831/HMJ.2009.31.2.157
  7. Y. B. Jun, New types of fuzzy BCK-fiters - II, Adv. Stud. Contemp. Math. (submitted).
  8. Y. B. Jun, S. M. Hong and J. Meng, Fuzzy BCK-fiters, Math. Japon. 47(1998), 45-49.
  9. Y. B. Jun and S. Z. Song, Generalized fuzzy interior ideals in semigroups, Inform. Sci. 176(2006), 3079-3093. https://doi.org/10.1016/j.ins.2005.09.002
  10. J. Meng, BCK-fiters, Math. Japon. 44(1996), 119-129.
  11. V. Murali, Fuzzy points of equivalent fuzzy subsets, Inform. Sci. 158(2004), 277-288. https://doi.org/10.1016/j.ins.2003.07.008
  12. P. M. Pu and Y. M. Liu, Fuzzy topology I, Neighborhood structure of a fuzzy point and Moore-Smith convergence, J. Math. Anal. Appl. 76(1980), 571-599. https://doi.org/10.1016/0022-247X(80)90048-7
  13. M. S. Ying, A new approach for fuzzy topology (I), Fuzzy Sets and Systems 39 (1991), 303-321. https://doi.org/10.1016/0165-0114(91)90100-5
  14. M. S. Ying, On standard models of fuzzy modal logics, Fuzzy Sets and Systems 26(1988), 357-363. https://doi.org/10.1016/0165-0114(88)90128-5