DOI QR코드

DOI QR Code

Zero-divisors of Semigroup Modules

  • Received : 2010.03.18
  • Accepted : 2010.12.27
  • Published : 2011.03.31

Abstract

Let M be an R-module and S a semigroup. Our goal is to discuss zero-divisors of the semigroup module M[S]. Particularly we show that if M is an R-module and S a commutative, cancellative and torsion-free monoid, then the R[S]-module M[S] has few zero-divisors of size n if and only if the R-module M has few zero-divisors of size n and Property (A).

Keywords

References

  1. J. T. Arnold and R. Gilmer, On the content of polynomials, Proc. Amer. Math. Soc. 40(1970), 556-562.
  2. D. D. Anderson and B. G. Kang, Content formulas for polynomials and power series and complete integral closure, J. Algebra, 181(1996), 82-94. https://doi.org/10.1006/jabr.1996.0110
  3. W. Bruns and A. Guerrieri, The Dedekind-Mertens formula and determinantal rings, Proc. Amer. Math. Soc. 127(1999), 657-663. https://doi.org/10.1090/S0002-9939-99-04535-9
  4. W. Bruns and J. Herzog, Cohen-Macaulay Rings, revised edn., Cambridge, 1998.
  5. J. Dauns, Primal modules, Comm. Algebra 25(1997), 2409-2435. https://doi.org/10.1080/00927879708825998
  6. R. Gilmer, Multiplicative Ideal Theory, Marcel Dekker, New York, 1972.
  7. R. Gilmer, Commutative Semigroup Rings, The University of Chicago Press, 1984.
  8. R. Gilmer, A. Grams and T. Parker, Zero divisors in power series rings, J. Reine Angew. Math. 278(1975), 145-164.
  9. W. Heinzer and C. Huneke, The Dedekind-Mertens Lemma and the content of polynomials, Proc. Amer. Math. Soc. 126(1998), 1305-1309. https://doi.org/10.1090/S0002-9939-98-04165-3
  10. J. A. Huckaba, Commutative Rings with Zero Divisors, Marcel Dekker, 1988.
  11. J. A. Huckaba and J. M. Keller, Annihilation of ideals in commutative rings, Pac. J. Math. 83(1979), 375-379. https://doi.org/10.2140/pjm.1979.83.375
  12. B. D. Janeway, Zero divisors in commutative semigroup rings, Comm. Algebra 12(1984), 1877-1887. https://doi.org/10.1080/00927878408823088
  13. I. Kaplansky, Commutative Rings, Allyn and Bacon, Boston, 1970.
  14. N. H. McCoy, Remarks on divisors of zero, Amer. Math. Monthly, 49(1942), 286-295. https://doi.org/10.2307/2303094
  15. P. Nasehpour, Content algebras over commutative rings with zero divisors, arXiv:0807.1835v3, preprint.
  16. D. G. Northcott, A generalization of a theorem on the content of polynomials, Proc. Cambridge Phil. Soc. 55(1959), 282-288. https://doi.org/10.1017/S030500410003406X
  17. P. Nasehpour and Sh. Payrovi, Modules having few zero-divisors, to appear in Comm. Algebra.
  18. P. Nasehpour and S. Yassemi, M-cancellation Ideals, Kyungpook Math. J., 40(2000), 259-263.
  19. J. Ohm and D. E. Rush, Content modules and algebras, Math. Scand. 31 (1972), 49-68. https://doi.org/10.7146/math.scand.a-11411
  20. D. E. Rush, Content algebras, Canad. Math. Bull. Vol. 21(3)(1978), 329-334. https://doi.org/10.4153/CMB-1978-057-8
  21. H. Tsang, Gauss' lemma, dissertation, University of Chicago, Chicago, 1965.
  22. O. Zariski and P. Samuel, Commutative Algebra, Vol. I, Van Nostrand, New York, 1958.

Cited by

  1. Auslander modules vol.59, pp.4, 2018, https://doi.org/10.1007/s13366-018-0378-6