DOI QR코드

DOI QR Code

Prediction of Fatigue life of Composite Laminates using Micromechanics of Failure

미시역학적 파손이론을 이용한 복합재 적층판의 피로수명 예측

  • 진교국 (한양대학교 기계공학과 복합재료) ;
  • 하성규 (한양대학교 기계공학과 복합재료) ;
  • 김재혁 (한양대학교 기계공학과 복합재료 대학원) ;
  • 한훈희 (한양대학교 기계공학과 복합재료 대학원)
  • Published : 2011.02.28

Abstract

Many tests are required to predict the fatigue life of composite laminates made of various materials and having different layup sequences. Aiming at reducing the number of tests, a methodology was presented in this paper to predict fatigue life of composite laminates based on fatigue life prediction of constituents, i.e. the fiber, matrix and interface, using micromechanics of failure. For matrix, the equivalent stress model which is generally used for isotropic materials was employed to take care of multi-axial fatigue loading. For fiber, a maximum stress model considering only stress along fiber direction was used. The critical plane model was introduced for the interface of the fiber and matrix, but fatigue life prediction was ignored for the interface since the interface fatigue strength was presumed high enough. The modified Goodman equation was utilized to take into account the mean stress effect. To check the validity of the theory, the fatigue life of three different GFRP laminates, UDT[$90^{\circ}2$], BX[${\pm}45^{\circ}$]S and TX[$0^{\circ}/{\pm}45^{\circ}$]S was examined experimentally. The comparison between predictions and test measurements showed good agreement.

복합재 적층판의 피로수명을 평가하는 것은 여러 가지 재료와 섬유적층각에 따라 수많은 인증실험이 요구된다. 본 논문에서는 미시역학적 파손이론을 이용하여 복합재의 구성재료인 섬유, 기지 및 섬유/기지 경계면의 피로수명 예측를 통해 복합재 적층판의 피로수명 평가를 할 수 있는 방법을 제시하였다. 기지는 다축응력상태을 고려할 수 있는 일반적인 등방성 재료의 등가응력파손식을 이용하였고, 섬유는 이방성 재료이지만 섬유방향의 응력이 주요하므로 섬유방향의 응력만 고려한 최대응력 파손식을 사용하였다. 섬유/기지 경계면에서는 임계단면파손식을 사용하였고, 경계면의 피로강도가 크다고 가정하여 경계면에서의 피로파손는 무시하였다. 인장과 압축강도가 다른 재료의 평균응력효과를 고려할 수 있도록 수정된 Goodman 식을 이용하였다. 순수 기지의 피로실험 데이터를 기반으로 미시역학적 파손이론을 이용하여 단일 플라이와 복합재 적층판인 UDT[$90^{\circ}2$], BX[${\pm}45^{\circ}$]S와 TX[$0^{\circ}/{\pm}45^{\circ}$]S의 피로수명을 예측해 보았고, 실험 데이터와 잘 일치함을 확인하였다.

Keywords

References

  1. Ellyin F., and El-Kadi H., "A Fatigue Failure Criterion for Fiber Reinforced Composite Laminae," Composite Structures, Vol. 15, No. 1, 1990, pp. 61-74. https://doi.org/10.1016/0263-8223(90)90081-O
  2. Plumtree A., and Cheng G.X., "A Fatigue Damage Parameter for Off-axial Unidirectional Fibre-Reinforced Composites," International Journal of Fatigue, Vol. 21, No. 8, 1999, pp. 849-856. https://doi.org/10.1016/S0142-1123(99)00026-2
  3. Varvani-Farahani A., Haftchenari H., and Panbechi M., "An Energy-based Fatigue Damage Parameter for Off-axis Unidirectional FRP Composites," Composite Structures, Vol. 79, No. 3, 2006, pp. 381-389.
  4. Shokrieh M.M., and Taheri-Behrooz F., "A Unified Fatigue Life Model based on Energy Method," Composite Structures, Vol. 75, No. 1-4, 2006, pp. 444-450. https://doi.org/10.1016/j.compstruct.2006.04.041
  5. 최재원, 황운봉, 박현철, 한경섭, "복합재료의 수리후 피로 거동 고찰," 한국복합재료학회지, 제12권, 제3호, 1996, pp. 26-35.
  6. Philippidis T.P., and Vassilopoulos A.P., "Fatigue Design Allowables for GRP Laminates based on Stiffness Degradation Measurements," Composites Science and Technology, Vol. 60, No. 15, 2000, pp. 2819-2828. https://doi.org/10.1016/S0266-3538(00)00150-0
  7. 이창수, 황운봉, "등가강도 개념에 의한 탄소섬유 복합재료의 이축강도 및 피로수명 예측," 한국복합재료학회지, 제12권, 제2호, 1999, pp. 53-61.
  8. 김성준, 황인희, "비선형 피로손상 모델을 이용한 복합재 피로수명 평가," 한국복합재료학회지, 제16권, 제1호, 2003, pp. 13-18.
  9. Hashin Z., and Rotem A., "A Fatigue Failure Criterion for Fiber Reinforced Materials," Journal of Composite Materials, Vol. 7, No. 4, 1973, pp. 448-464. https://doi.org/10.1177/002199837300700404
  10. Philippidis T.P., and Vassilopoulos A.P., "Fatigue Strength Prediction under Multiaxial Stress," Journal of Composite Materials, Vol. 33, No. 17, 1999, pp. 1578-1599. https://doi.org/10.1177/002199839903301701
  11. Kawai M., Yajima S., Hachinohe A., and Takano Y., "Off-axis Fatigue Behavior of Unidirectional Carbon Fiber-reinforced Composites at Room and High Temperatures," Journal of Composite Materials, Vol. 35, No. 7, 2001, pp. 545-576. https://doi.org/10.1177/002199801772662073
  12. Liu Y., and Mahadevan S., "A Unified Multiaxial Fatigue Damage Model for Isotropic and Anisotropic Materials," International Journal of Fatigue, Vol. 29, No. 2, 2007, pp. 347-359. https://doi.org/10.1016/j.ijfatigue.2006.03.011
  13. Lian W., and Yao W., "Fatigue Life Prediction of Composite Laminates by FEA Simulation Method," International Journal of Fatigue, Vol. 32, No. 1, 2010, pp. 123-133. https://doi.org/10.1016/j.ijfatigue.2009.01.015
  14. Akshantala N.V., and Talreja R., "A Micromechanics based Model for Predicting Fatigue Life of Composite Laminates," Materials Science and Engineering A, Vol. 285, No. 1-2, 2000, pp. 303-313. https://doi.org/10.1016/S0921-5093(00)00679-1
  15. Petermann J., and Plumtree A., "A Unified Fatigue Failure Criterion for Unidirectional Laminates," Composites Part A, Vol. 32, No. 1, 2001, pp. 107-118. https://doi.org/10.1016/S1359-835X(00)00099-3
  16. Huang Z.M., "Micromechanical Modeling of Fatigue Strength of Unidirectional Fibrous Composites," International Journal of Fatigue, Vol. 24, No. 4, 2002, pp. 659-670. https://doi.org/10.1016/S0142-1123(01)00185-2
  17. Miner, M.A., "Cumulative Damage in Fatigue," Journal of Applied Mechanics, Vol. 12, No. 3, 1945, pp. 159-164.
  18. Jin K.K., Huang Y., Lee Y.H., and Ha S.K., "Distribution of Micro Stresses and Interfacial Tractions in Unidirectional Composites," Journal of Composite Materials, Vol. 42, No. 18, 2008, pp. 1825-1849. https://doi.org/10.1177/0021998308093909
  19. Huang Y., Jin K.K. and Ha S.K., "Effects of Fiber Arrangement on Mechanical Behavior of Unidirectional Composites," Journal of Composite Materials, Vol. 42, No. 18, 2008, pp. 1851-1871. https://doi.org/10.1177/0021998308093910
  20. Garnich M.R. and Hansen A.C., "A Multicontinuum Theory for Thermal-Elastic Finite element Analysis of Composite Materials," Journal of Composite Materials, Vol. 31, No. 1, 1997, pp. 71-86. https://doi.org/10.1177/002199839703100105
  21. Tao G., and Xia Z., "Biaxial Fatigue Behavior of an Epoxy Polymer with Mean Stress Effect," International Journal of Fatigue, Vol. 31, No. 4, 2009, pp. 678-685. https://doi.org/10.1016/j.ijfatigue.2008.03.025
  22. Kawai M., Koizumi M., "Nonlinear Constant Fatigue Life Diagrams for Carbon/Epoxy Laminates at Room Temperature," Composites Part A, Vol. 38, No. 11, 2007, pp. 2342-2353. https://doi.org/10.1016/j.compositesa.2007.01.016
  23. Vassilopoulos A.P., Manshadi B.D., and Keller T., "Influence of the Constant Life Diagram Formulation on the Fatigue Life Prediction of Composite Materials," International Journal of Fatigue, Vol. 32, No. 4, 2010, pp. 659-669. https://doi.org/10.1016/j.ijfatigue.2009.09.008

Cited by

  1. Prediction of Thermoelastic Constants of Unidirectional Porous Composites Using an Unmixing-Mixing Scheme vol.25, pp.2, 2012, https://doi.org/10.7234/kscm.2012.25.2.034
  2. 섬유 방향에 따른 복합재 피로특성에 관한 연구 vol.34, pp.2, 2011, https://doi.org/10.7234/composres.2021.34.2.077