• Title/Summary/Keyword: multi-axial stress

Search Result 87, Processing Time 0.022 seconds

Fatigue Life Estimation Using the Multi-Axial Multi-Point Load Counting Method under Variable Amplitude Loading (가변진폭하중하에서 다축-다점 하중 Counting method를 이용한 피로수명평가)

  • Lee, W.S.;Lee, H.W.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.6
    • /
    • pp.22-27
    • /
    • 1997
  • In general, the load which acts on the structure is almost independent of time in many locations. In this case. It is difficult to estimate the life with the service load history, because the structure is on the multi- axial and multi-point loading states. In this study, the service load of the excavator which is widely used in industry field was calculated using measured cylinder pressures and displacements. The fatigue life was estimated using the multi-axial and multi-point load counting method. Service load history of 4 pin joint which act independently each other is yielded by mult-axial and multi-point load counting method. The stress spectrum is yielded by superposition of the results of FEM stress analysis applied unit load. Palm- gren-Miner's cumulative Damage is 0.000804 for Von Mises equivalent stress sequence by one side fillet weld S-N curve. This result agress with Bench test results. As a result of this study, the fatigue life esti- mation using the multi-axial and multi-axial and multi-point load counting method is useful.

  • PDF

Multi-axial strength criterion of lightweight aggregate (LWA) concrete under the Unified Twin-shear strength theory

  • Wang, Li-Cheng
    • Structural Engineering and Mechanics
    • /
    • v.41 no.4
    • /
    • pp.495-508
    • /
    • 2012
  • The strength theory of concrete is significant to structure design and nonlinear finite element analysis of concrete structures because concrete utilized in engineering is usually subject to the action of multi-axial stress. Experimental results have revealed that lightweight aggregate (LWA) concrete exhibits plastic flow plateau under high compressive stress and most of the lightweight aggregates are crushed at this stage. For the purpose of safety, therefore, in the practical application the strength of LWA concrete at the plastic flow plateau stage should be regarded as the ultimate strength under multi-axial compressive stress state. With consideration of the strength criterion, the ultimate strength surface of LWA concrete under multi-axial stress intersects with the hydrostatic stress axis at two different points, which is completely different from that of the normal weight concrete as that the ultimate strength surface is open-ended. As a result, the strength criteria aimed at normal weight concrete do not fit LWA concrete. In the present paper, a multi-axial strength criterion for LWA concrete is proposed based on the Unified Twin-Shear Strength (UTSS) theory developed by Prof Yu (Yu et al. 1992), which takes into account the above strength characteristics of LWA under high compressive stress level. In this strength criterion model, the tensile and compressive meridians as well as the ultimate strength envelopes in deviatoric plane under different hydrostatic stress are established just in terms of a few characteristic stress states, i.e., the uniaxial tensile strength $f_t$, the uniaxial compressive strength $f_c$, and the equibiaxial compressive $f_{bc}$. The developed model was confirmed to agree well with experimental data under different stress ratios of LWA concrete.

Prediction of Surface Residual Stress of Multi-pass Drawn Steel Wire Using Numerical Analysis (수치해석을 이용한 탄소강 다단 신선 와이어 표면 잔류응력 예측)

  • Lee, S.B.;Lee, I.K.;Jeong, M.S.;Kim, B.M.;Lee, S.K.
    • Transactions of Materials Processing
    • /
    • v.26 no.3
    • /
    • pp.162-167
    • /
    • 2017
  • The tensile surface residual stress in the multi-pass drawn wire deteriorates the mechanical properties of the wire. Therefore, the evaluation of the residual stress is very important. Especially, the axial residual stress on the wire surface is the highest. Therefore, the objective of this study was to propose an axial surface residual stress prediction model of the multi-pass drawn steel wire. In order to achieve this objective, an elastoplastic finite element (FE) analysis was carried out to investigate the effect of semi-die angle and reduction ratio of the axial surface residual stress. By using the results of the FE analysis, a surface residual stress prediction model was proposed. In order to verify the effectiveness of the prediction model, the predicted residual stress was compared to that of a wire drawing experiment.

Evaluation of Axial Residual Stress in Multi-Pass Drawn High Carbon Steel Wire Considering Effective Stress-Strain Curve at High Strain (고변형률 영역의 유효응력-변형률 곡선을 고려한 고탄소강 다단 신선 와이어 축방향 잔류응력 평가)

  • Lee, Sang-Kon;Kim, Dae-Woon;Kim, Byung-Min;Jung, Jin-Young;Ban, Duk-Young;Lee, Seon-Bong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.8
    • /
    • pp.70-75
    • /
    • 2010
  • The aim of this study is to evaluate the axial residual stress in multi-pass drawn high carbon steel wire by using FE analysis and XRD. When FE analysis is applied to evaluate the residual stress in drawn wire of multi-pass drawing process, obtaining the reliable effective stress-strain curve at high strain is very important. In this study, a model, which can express the reliable effective stress-strain curve at high strain, is introduced based on the Bridgman correction and tensile test for multi-pass drawn high carbon steel wires. By using the introduced model, FE analysis was carried out to evaluate the axial residual stress in the drawn wires. Finally, the effectiveness of the FE analysis with the introduced stress-strain relation was verified by the measurement of residual stress in the drawn wires through XRD. As a result, the evaluated residual stress of FE analysis shows good agreement with the measured residual stress.

Effects of Bainitic Transformation Temperature and Stress State on the Formability of C-Mn-Si TRIP Steels (C-Mn-Si계 변태유기소성강의 성형성에 미치는 베이나이트 변태온도 및 응력상태의 영향)

  • Jun H. S.;Oh J. H.;Park C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.156-160
    • /
    • 2001
  • The effects of TRansformation Induced Plasticity(TRIP) phenomena on the plastic deformation of 0.2C-1.5Si-1.5Mn multiphase steels have been investigated at various heat treatment and stress conditions. In order to estimate the formability, the hole expansion(HE) tests and the tensile tests were carried out. The formability evaluated from the uni-axial tensile tests was quite different from the formability measured from multi-axial HE-tests. Consequently, the formability in the multi-axial stress state decreased due to the extinction of the retained austenite relatively at earlier deformation stage and the production of irregular α' martensite. However, the defects of TRIP-steels were initiated exactly at the boundary between transformed martensite and ferrite matrix regardless of stress state. In addition, new experimental formula is proposed in order to predict the multi-axial formability of the TRIP steels from the results of uniaxial tensile test.

  • PDF

Stress analysis of an infinite rectangular plate perforated by two unequal circular holes under bi-axial uniform stresses

  • Yang, Yeong-Bin;Kang, Jae-Hoon
    • Structural Engineering and Mechanics
    • /
    • v.61 no.6
    • /
    • pp.747-754
    • /
    • 2017
  • Exact solutions for stresses for an infinite rectangular plate perforated by two circular holes of different radii subjected to uni-axial or bi-axial uniform loads are investigated using the Airy stress function. The hoop stresses occurring at the edge of the circular hole are computed and plotted. Comparisons are made for the stress concentration factors for several types of loading conditions.

Stress concentration factors for multi-planar tubular KK-joints of jacket substructures in offshore wind turbines

  • Hamid Ahmadi;Adel Alizadeh Atalo
    • Ocean Systems Engineering
    • /
    • v.14 no.3
    • /
    • pp.237-259
    • /
    • 2024
  • Although the investigation on the effect of loaded out-of-plane braces on the values of the stress concentration factor (SCF) in offshore tubular joints has been the objective of numerous research works, a number of quite important cases still exist that have not been studied thoroughly due to the diversity of joint types and loading conditions. One of these cases is the multi-planar tubular KK-joint subjected to axial loading. Tubular KK-joints are among the most common joint types in jacket substructure of offshore wind turbines (OWTs). In the present research, data extracted from the stress analysis of 243 finite element (FE) models, verified against available experimental data, was used to study the effects of geometrical parameters on the chord-side SCFs in multi-planar tubular KK-joints subjected to axial loading. Parametric FE study was followed by a set of nonlinear regression analyses to develop three new SCF parametric equations for the fatigue analysis and design of axially loaded multi-planar KK-joints.

Fatigue life estimation using the multi-axial multi-point Load Counting method under Variable Amplitude Loading (가변진폭하중에서 다축-다점 하중 Counting method를 이용한 피로수명평가)

  • 이원석;이현우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.913-920
    • /
    • 1996
  • In this study, the counting method for multi-axial and multi-point load states was proposed. Using this counting method, the load spectrum is generated from the service load history which is measured for boom structure of excavator. Loading state for loading points of boom structure is described as a multi-dimensional state space. From this load spectrum, the stress spectrum was generated by FEM analysis using the superposition of the unit load. The cumulated damage at the severe damage point of In nm structure by the failure example is calculated by Palmgren-Miner's rule. As a result of this study, the fatigue life estimation using the multi-axial and multi-point load counting method is useful.

  • PDF

The Effects of Geometrical Shape and Post Weld Treatment on Welding Residual Stress Distribution of Weldment in Multi-pass Welded Pipe (다층용접배관의 용접부 잔류음력분포에 대한 기하학적형상과 용접후처리의 영향)

  • 김철한;조선영;김복기;배동호
    • Journal of Welding and Joining
    • /
    • v.19 no.1
    • /
    • pp.49-57
    • /
    • 2001
  • In this study, the residual stress fields of multi-pass welded were analyzed by FEA under various geometrical conditions. In order to estimate the effects of pipe geometries on residual stress distribution, welding processes of each model were performed under the same heat cycles. And then, the influence of cutting off the weld bead on the residual stress redistribution was also estimated. From the results, in the range of t/D=0.05, axial residual stresses on the outer surface of the welded pipe were linearly decreased with pipe diameter increase. On the other hand, hoop residual stresses were not influenced by them. And both axial and hoop residual stresses on the outer surface of the welded pipe were increased with pipe diameter increase. But, when t/D was smaller than 0.05, they were converged in the nearly same value. The maximum residual stresses were generated at around HAZ. It in therefore necessary to consider them in welding design, strength evaluation, and analysis of fracture characteristics.

  • PDF

Multi-spring model for 3-dimensional analysis of RC members

  • Li, Kang-Ning;Otani, Shunsuke
    • Structural Engineering and Mechanics
    • /
    • v.1 no.1
    • /
    • pp.17-30
    • /
    • 1993
  • A practical multi-spring model is proposed for a nonlinear analysis of reinforced concrete members, especially columns, taking into account the interaction of axial load and bi-directional bending moment. The parameters of the model are determined on the basis of material properties and section geometry. The axial force-moment interaction curve of reinforced concrete sections predicted by the model was shown to agree well with those obtained by the flexural analysis utilizing realistic stress-strain relations of materials. The reliability of the model was also examined with respect to the test of reinforced concrete columns subjected to varying axial load and bi-directional lateral load reversals. The analytical results agreed well with the experiment.