References
- Doyle, J.J., and Luckow, M.A. (2003). The rest of the iceberg. Legume diversity and evolution in a phylogenetic context. Plant Physiol 131, 900-910. https://doi.org/10.1104/pp.102.018150
- Swanson, E.B., Somers, D.A., and Tomes, D.T. (1990). Birdsfoot Trefoil (Lotus corniculatus L.). Legumes and Oilseed Crops I. Biotechnology in Agriculture and Forestry (Berlin: Springer) 10, 323-340. https://doi.org/10.1007/978-3-642-74448-8_14
- Pajuelo, E., and Stougaard, J. (2005). Lotus japonicus as a model system. Lotus japonicus Handbook, Ed Marquez A J, (Netherlands: Springer) 3-24.
- Handberg, K., and Stougaard, J. (1992). Lotus japonicus, an autogamous, diploid legume species for classical and molecular genetics. Plant J 2, 487-496. https://doi.org/10.1111/j.1365-313X.1992.00487.x
- Stougaard, J. and Beuselink, P.R. (1996). Registration of GIFU B-129-S9 Lotus japonicus germplasm. Crop Sci 36, 476.
- Kawaguchi, M. (2000). Lotus japonicus 'Miyakojima' MG-20: An early-flowering accession suitable for indoor handling. J Plant Res 133, 507-509.
- Sato, S. and Tabata, S. (2006). Lotus japonicus as a platform for legume research. Curr Opin Plant Biol 9, 128-132. https://doi.org/10.1016/j.pbi.2006.01.008
- Kawaguchi, M., Motomura, T., Imaizumi-Anraku, H., Akao, S., and Kawasaki, S. (2001). Providing the basis for genomics in Lotus japonicus: the accessions Miyakojima and Gifu are appropriate crossing partners for genetic analyses. Mol Genet Genomics 266, 157-166. https://doi.org/10.1007/s004380100540
- Sato, S., Nakamura, Y., Kaneko, T., Asamizu, E., Kato, T., Nakao, M., Sasamoto, S., Watanabe, A., Ono, A., Kawashima, K., et al. (2008). Genome structure of the legume, Lotus japonicus. DNA Res 15, 227-239. https://doi.org/10.1093/dnares/dsn008
- Suginobu, K., Suzuki, S., and Komatsu, T. (1988). Evaluation of the characteristics in Miyakogusa (Lotus corniculatus L. var. japonicus Regal) 3. Characteristics of local strains collected from different regions in Japan. J Jpn Grassl Sci (in Japanese with English abstract) 34, 13-19.
- Gondo, T., Sato, S., Okumura, K., Tabata, S., Akashi, R., and Isobe, S. (2007). Quantitative trait locus analysis of multiple agronomic traits in the model legume Lotus japonicus. Genome 50, 627-637. https://doi.org/10.1139/G07-040
- Akashi, T., Koshimizu, S., Aoki, T., and Ayabe, S. (2006). Identification of cDNAs encoding pterocarpan reductase involved in isoflavan phytoalexin biosynthesis in Lotus japonicus by EST mining. FEBS Lett 580, 5666-5670. https://doi.org/10.1016/j.febslet.2006.09.016
- Shimada, N., Aoki, T., Sato, S., Nakamura, Y., Tabata, S., and Ayabe, S. (2003). A cluster of genes encodes the two types of chalcone isomerase involved in the biosynthesis of general flavonoids and legume-specific 5-deoxy(iso)flavonoids in Lotus japonicus. Plant Physiol 131, 941-951. https://doi.org/10.1104/pp.004820
- Brown, A.H.D. (1989). Core collections: a practical approach to genetic resources management. Genome 31, 818-824. https://doi.org/10.1139/g89-144
- Yamazaki, Y., Akashi, R., Banno, Y., Endo, T., Ezura, H., Fukami-Kobayashi, K., Inaba, K., Isa, T., Kamei, K., Kasai, F., et al. (2010). NBRP databases: databases of biological resources in Japan. Nucleic Acids Res 38, D26-32. https://doi.org/10.1093/nar/gkp996
- Sneathp, H.A., and Sokal, R. (1973). Numerical Taxonomy. The Principles and Practice of Numerical Classification. (San Francisco: W. H. Freeman).
Cited by
- The alkaline tolerance in Lotus japonicus is associated with mechanisms of iron acquisition and modification of the architectural pattern of the root vol.206, 2016, https://doi.org/10.1016/j.jplph.2016.09.005
- Response to Long-Term NaHCO3-Derived Alkalinity in Model Lotus japonicus Ecotypes Gifu B-129 and Miyakojima MG-20: Transcriptomic Profiling and Physiological Characterization vol.9, pp.5, 2014, https://doi.org/10.1371/journal.pone.0097106