References
- Witkowski, J. (2010). Long view of the Human Genome Project. Nature 466, 921-922. https://doi.org/10.1038/466921a
- Feder, M.E., and Mitchell-Olds, T. (2003). Evolutionary and ecological functional genomics. Nat Rev Genet 4, 651-657. https://doi.org/10.1038/nrm1173
- Huttenhower, C., Haley, E.M., Hibbs, M.A., Dumeaux, V., Barrett, D.R., Coller, H.A., and Troyanskaya, O.G. (2009). Exploring the human genome with functional maps. Genome Res 19, 1093-1106. https://doi.org/10.1101/gr.082214.108
- Ho, C.H., Piotrowski, J., Dixon, S.J., Baryshnikova, A., Costanzo, M., and Boone, C. (2010). Combining functional genomics and chemical biology to identify targets of bioactive compounds. Curr Opin Chem Biol 15, 1-13.
- Stockwell, B.R. (2000). Chemical genetics: ligand-based discovery of gene function. Nat Rev Genet 1, 116-125. https://doi.org/10.1038/35038557
- De Rybel, B., Audenaert, D., Beeckman, T., and Kepinski, S. (2009). The past, present, and future of chemical biology in auxin research. ACS Chem Biol 4, 987-998. https://doi.org/10.1021/cb9001624
- Chang, Y.T. (2008). Forward Chemical Genetics. Willey Encyclopedia Chem Bio, 1-8.
- Neumann, G., Hatta, M., and Kawaoka, Y. (2003). Reverse genetics for the control of avian influenza. Avian Dis 47, 882-887. https://doi.org/10.1637/0005-2086-47.s3.882
- Zheng, X.F., and Chan, T.F. (2002). Chemical genomics in the global study of protein functions. Drug Discov Today 7, 197-205. https://doi.org/10.1016/S1359-6446(01)02118-3
- Stockwell, B.R., Haggarty, S.J., and Schreiber, S.L. (1999). High-throughput screening of small molecules in miniaturized mammalian cell-based assays involving post-translational modifications. Chem Biol 6, 71-83. https://doi.org/10.1016/S1074-5521(99)80004-0
- Stockwell, B.R. (2004). Exploring biology with small organic molecules. Nature 432, 846-854. https://doi.org/10.1038/nature03196
- Egener, T., Granado, J., Guitton, M.C., Hohe, A., Holtorf, H., Lucht, J.M., Rensing, S.A., Schlink, K., Schulte, J., Schween, G., et al. (2002). High frequency of phenotypic deviations in Physcomitrella patens plants transformed with a gene-disruption library. BMC Plant Biol 2, 6. https://doi.org/10.1186/1471-2229-2-6
- Namy, O., Hatin, I., Stahl, G., Liu, H., Barnay, S., Bidou, L., and Rousset, J.P. (2002). Gene overexpression as a tool for identifying new trans-acting factors involved in translation termination in Saccharomyces cerevisiae. Genetics 161, 585-594.
- Koivisto, U.M., Hubbard, A.L., and Mellman, I. (2001). A novel cellular phenotype for familial hypercholesterolemia due to a defect in polarized targeting of LDL receptor. Cell 105, 575-585. https://doi.org/10.1016/S0092-8674(01)00371-3
- Ballard, J.W., and Melvin, R.G. (2010). Linking the mitochondrial genotype to the organismal phenotype. Mol Ecol 19, 1523-1539. https://doi.org/10.1111/j.1365-294X.2010.04594.x
- Spring, D.R. (2005). Chemical genetics to chemical genomics: small molecules offer big insights. Chem Soc Rev 34, 472-482. https://doi.org/10.1039/b312875j
- Kim, Y.K., and Chang, Y.T. (2007). Tagged library approach facilitates forward chemical genetics. Mol Biosyst 3, 392-397. https://doi.org/10.1039/b702321a
- Scherer, L.J., and Rossi, J.J. (2003). Approaches for the sequence-specific knockdown of mRNA. Nat Biotechnol 21, 1457-1465. https://doi.org/10.1038/nbt915
- Lokey, R.S. (2003). Forward chemical genetics: progress and obstacles on the path to a new pharmacopoeia. Curr Opin Chem Biol 7, 91-96. https://doi.org/10.1016/S1367-5931(02)00002-9
- Kidera, A., and Go, N. (1990). Refinement of protein dynamic structure: normal mode refinement. Proc Natl Acad Sci U S A 87, 3718-3722. https://doi.org/10.1073/pnas.87.10.3718
- Shapiro, J.A. (1998). Thinking About Bacterial Populations as Multicellular Organisms. Annu Rev Microbiol 52, 81-104. https://doi.org/10.1146/annurev.micro.52.1.81
- Ding, S., Wu, T.Y., Brinker, A., Peters, E.C., Hur, W., Gray, N.S., and Schultz, P.G. (2003). Synthetic small molecules that control stem cell fate. Proc Natl Acad Sci U S A 100, 7632-7637. https://doi.org/10.1073/pnas.0732087100
- Boshoff, H.I., and Dowd, C.S. (2007). Chemical genetics: an evolving toolbox for target identification and lead optimization. Prog Drug Res 64, 49, 51-77. https://doi.org/10.1007/978-3-7643-7567-6_3
- Raikhel, N., and Pirrung, M. (2005). Adding precision tools to the plant biologists' toolbox with chemical genomics. Plant Physiol 138, 563-564. https://doi.org/10.1104/pp.104.900155
- Evans, M.J., Saghatelian, A., Sorensen, E.J., and Cravatt, B.F. (2005). Target discovery in small-molecule cell-based screens by in situ proteome reactivity profiling. Nat Biotechnol 23, 1303-1307. https://doi.org/10.1038/nbt1149
- Snyder, J.R., Hall, A., Ni-Komatsu, L., Khersonsky, S.M., Chang, Y.T., and Orlow, S.J. (2005). Dissection of melanogenesis with small molecules identifies prohibitin as a regulator. Chem Biol 12, 477-484. https://doi.org/10.1016/j.chembiol.2005.02.014
- Warashina, M., Min, K.H., Kuwabara, T., Huynh, A., Gage, F.H., Schultz, P.G., and Ding, S. (2006). A synthetic small molecule that induces neuronal differentiation of adult hippocampal neural progenitor cells. Angew Chem Int Ed Engl 45, 591-593. https://doi.org/10.1002/anie.200503089
- Wang, S., and Chang, Y.T. (2008). Discovery of heparin chemosensors through diversity oriented fluorescence library approach. Chem Commun (Camb), 1173-1175.
- Wang, S., Kim, Y.K., and Chang, Y.T. (2008). Diversity-oriented fluorescence library approach (DOFLA) to the discovery of chymotrypsin sensor. J Comb Chem 10, 460-465. https://doi.org/10.1021/cc700189b
- Wang, S., Kim, Y.K., and Chang, Y.T. (2008). Diversity-oriented fluorescence library approach (DOFLA) to the discovery of chymotrypsin sensor. J Comb Chem 10, 460-465. https://doi.org/10.1021/cc700189b
- Lee, J.S., Kim, Y.K., Vendrell, M., and Chang, Y.T. (2009). Diversity-oriented fluorescence library approach for the discovery of sensors and probes. Mol Biosyst 5, 411-421. https://doi.org/10.1039/b821766c
- Carlson, E.E. (2010). Natural products as chemical probes. ACS Chem Biol 5, 639-653. https://doi.org/10.1021/cb100105c
- Bargagna-Mohan, P., Hamza, A., Kim, Y.E., Khuan Abby Ho, Y., Mor-Vaknin, N., Wendschlag, N., Liu, J., Evans, R.M., Markovitz, D.M., Zhan, C.G., et al. (2007). The tumor inhibitor and antiangiogenic agent withaferin A targets the intermediate filament protein vimentin. Chem Biol 14, 623-634. https://doi.org/10.1016/j.chembiol.2007.04.010
- Crews, C.M., Yeh, J., Mohan, R., Meng, L., Kim, K., Splittgerber, U., Kwok, B. H. B., and Elofsson, M. (2000). Natural products as molecular probes: A chemical genetic approach to pharmaceutical target validation. Abstr Pap Am Chem S 219, U480-U480.
- Crews, C.M. (2006). Chemical genetics: Using natural products as probes for cell biology. Abstr Pap Am Chem S 231.
- Yang, J., Shamji, A., Matchacheep, S., and Schreiber, S.L. (2007). Identification of a small-molecule inhibitor of class Ia PI3Ks with cell-based screening. Chem Biol 14, 371-377. https://doi.org/10.1016/j.chembiol.2007.02.004
- Zhang, W., Lu, Y., Hiu-Tung Chen, C., Zeng, L., and Kassel, D.B. (2006). Fluorous mixture synthesis of two libraries with hydantoin-, and benzodiazepinedione-fused heterocyclic scaffolds. J Comb Chem 8, 687-695. https://doi.org/10.1021/cc060061e
- Miyazaki, K., Hirase, T., Kojima, Y., and Flint, H.J. (2005). Medium- to large-sized xylo-oligosaccharides are responsible for xylanase induction in Prevotella bryantii B14. Microbiology 151, 4121-4125. https://doi.org/10.1099/mic.0.28270-0
- Kelly, K., Alencar, H., Funovics, M., Mahmood, U., and Weissleder, R. (2004). Detection of invasive colon cancer using a novel, targeted, library-derived fluorescent peptide. Cancer Res 64, 6247-6251. https://doi.org/10.1158/0008-5472.CAN-04-0817
- Botstein, D., Chervitz, S.A., and Cherry, J.M. (1997). Yeast as a model organism. Science 277, 1259-1260. https://doi.org/10.1126/science.277.5330.1259
- Blackwell, H.E., and Zhao, Y. (2003). Chemical genetic approaches to plant biology. Plant Physiol 133, 448-455. https://doi.org/10.1104/pp.103.031138
- Rorth, P., Szabo, K., Bailey, A., Laverty, T., Rehm, J., Rubin, G.M., Weigmann, K., Milan, M., Benes, V., Ansorge, W., et al. (1998). Systematic gain-of-function genetics in Drosophila. Development 125, 1049-1057.
- Adams, M.D., Celniker, S.E., Holt, R.A., Evans, C.A., Gocayne, J.D., Amanatides, P.G., Scherer, S.E., Li, P.W., Hoskins, R.A., Galle, R.F., et al. (2000). The genome sequence of Drosophila melanogaster. Science 287, 2185-2195. https://doi.org/10.1126/science.287.5461.2185
- Lacchini, A.H., Everington, M.L., Augousti , A.T., and Walker, A.J. (2007). Use of C. Elegans as a model organism for sensing the effects of ELF-EMFs. J. Phys.: Conf. Ser. 76, 012027. https://doi.org/10.1088/1742-6596/76/1/012027
- Mendoza, L.G., McQuary, P., Mongan, A., Gangadharan, R., Brignac, S., and Eggers, M. (1999). High-throughput microarray-based enzyme-linked immunosorbent assay (ELISA). Biotechniques 27, 778-780, 782-776, 788.
- Eggert, U.S., and Mitchison, T.J. (2006). Small molecule screening by imaging. Curr Opin Chem Biol 10, 232-237. https://doi.org/10.1016/j.cbpa.2006.04.010
- Guy, R.L., Gonias, L.A., and Stein, M.A. (2000). A fluorescence microscopy based genetic screen to identify mutants altered for interactions with host cells. J Microbiol Methods 42, 129-138. https://doi.org/10.1016/S0167-7012(00)00188-3
- Taylor, D.L. (2010). A personal perspective on high-content screening (HCS): from the beginning. J Biomol Screen 15, 720-725. https://doi.org/10.1177/1087057110374995
- Khersonsky, S.M., Jung, D.W., Kang, T.W., Walsh, D.P., Moon, H.S., Jo, H., Jacobson, E.M., Shetty, V., Neubert, T.A., and Chang, Y.T. (2003). Facilitated forward chemical genetics using a tagged triazine library and zebrafish embryo screening. J Am Chem Soc 125, 11804-11805. https://doi.org/10.1021/ja035334d
- Ahn, Y.H., and Chang, Y.T. (2007). Tagged small molecule library approach for facilitated chemical genetics. Acc Chem Res 40, 1025-1033. https://doi.org/10.1021/ar700030k
- McPherson, M., Yang, Y., Hammond, P.W., and Kreider, B.L. (2002). Drug receptor identification from multiple tissues using cellular-derived mRNA display libraries. Chem Biol 9, 691-698. https://doi.org/10.1016/S1074-5521(02)00148-5
- Kotake, Y., Sagane, K., Owa, T., Mimori-Kiyosue, Y., Shimizu, H., Uesugi, M., Ishihama, Y., Iwata, M., and Mizui, Y. (2007). Splicing factor SF3b as a target of the antitumor natural product pladienolide. Nat Chem Biol 3, 570-575. https://doi.org/10.1038/nchembio.2007.16
- Zhu, S., Wurdak, H., Wang, J., Lyssiotis, C.A., Peters, E.C., Cho, C.Y., Wu, X., and Schultz, P.G. (2009). A small molecule primes embryonic stem cells for differentiation. Cell Stem Cell 4, 416-426. https://doi.org/10.1016/j.stem.2009.04.001
- Webb, Y., Zhou, X., Ngo, L., Cornish, V., Stahl, J., Erdjument-Bromage, H., Tempst, P., Rifkind, R.A., Marks, P.A., Breslow, R., et al. (1999). Photoaffinity labeling and mass spectrometry identify ribosomal protein S3 as a potential target for hybrid polar cytodifferentiation agents. J Biol Chem 274, 14280-14287. https://doi.org/10.1074/jbc.274.20.14280
- MacKinnon, A.L., Garrison, J.L., Hegde, R.S., and Taunton, J. (2007). Photo-leucine incorporation reveals the target of a cyclodepsipeptide inhibitor of cotranslational translocation. J Am Chem Soc 129, 14560-14561. https://doi.org/10.1021/ja076250y
- Wurdak, H., Zhu, S., Min, K.H., Aimone, L., Lairson, L.L., Watson, J., Chopiuk, G., Demas, J., Charette, B., Halder, R., et al. (2010). A small molecule accelerates neuronal differentiation in the adult rat. Proc Natl Acad Sci U S A 107, 16542-16547. https://doi.org/10.1073/pnas.1010300107
- Tanaka, H., Ohshima, N., and Hidaka, H. (1999). Isolation of cDNAs encoding cellular drug-binding proteins using a novel expression cloning procedure: drug-western. Mol Pharmacol 55, 356-363. https://doi.org/10.1124/mol.55.2.356
- Becker, F., Murthi, K., Smith, C., Come, J., Costa-Roldan, N., Kaufmann, C., Hanke, U., Degenhart, C., Baumann, S., Wallner, W., et al. (2004). A three-hybrid approach to scanning the proteome for targets of small molecule kinase inhibitors. Chem Biol 11, 211-223. https://doi.org/10.1016/S1074-5521(04)00029-8
- Eyckerman, S., Verhee, A., der Heyden, J.V., Lemmens, I., Ostade, X.V., Vandekerckhove, J., and Tavernier, J. (2001). Design and application of a cytokine-receptor-based interaction trap. Nat Cell Biol 3, 1114-1119. https://doi.org/10.1038/ncb1201-1114
- Caligiuri, M., Molz, L., Liu, Q., Kaplan, F., Xu, J.P., Majeti, J.Z., Ramos-Kelsey, R., Murthi, K., Lievens, S., Tavernier, J., et al. (2006). MASPIT: three-hybrid trap for quantitative proteome fingerprinting of small molecule-protein interactions in mammalian cells. Chem Biol 13, 711-722. https://doi.org/10.1016/j.chembiol.2006.05.008
- Jung, J.H., Shim, J.S., Park, J., Ha, H.J., Kim, J.H., Kim, J.G., Kim, N.D., Yoon, J.H., and Kwon, J. (2009). Proteomics Clin. Appl. 3, 423-432. https://doi.org/10.1002/prca.200800060
- Hammond, P.W., Alpin, J., Rise, C.E., Wright, M., and Kreider, B.L. (2001). In vitro selection and characterization of Bcl-X(L)-binding proteins from a mix of tissue-specific mRNA display libraries. J Biol Chem 276, 20898-20906. https://doi.org/10.1074/jbc.M011641200
- Lipovsek, D., and Pluckthun, A. (2004). In-vitro protein evolution by ribosome display and mRNA display. J Immunol Methods 290, 51-67. https://doi.org/10.1016/j.jim.2004.04.008
- Liu, R., Barrick, J.E., Szostak, J.W., and Roberts, R.W. (2000). Optimized synthesis of RNA-protein fusions for in vitro protein selection. Methods Enzymol 318, 268-293. https://doi.org/10.1016/S0076-6879(00)18058-9
- Kino, T., Hatanaka, H., Hashimoto, M., Nishiyama, M., Goto, T., Okuhara, M., Kohsaka, M., Aoki, H., and Imanaka, H. (1987). FK-506, a novel immunosuppressant isolated from a Streptomyces. I. Fermentation, isolation, and physico-chemical and biological characteristics. J Antibiot (Tokyo) 40, 1249-1255. https://doi.org/10.7164/antibiotics.40.1249
- MacBeath, G., and Schreiber, S.L. (2000). Printing proteins as microarrays for high-throughput function determination. Science 289, 1760-1763.
- Zhu, H., and Snyder, M. (2003). Protein chip technology. Curr Opin Chem Biol 7, 55-63. https://doi.org/10.1016/S1367-5931(02)00005-4
- Astle, J.M., Simpson, L.S., Huang, Y., Reddy, M.M., Wilson, R., Connell, S., Wilson, J., and Kodadek, T. (2010). Seamless bead to microarray screening: rapid identification of the highest affinity protein ligands from large combinatorial libraries. Chem Biol 17, 38-45. https://doi.org/10.1016/j.chembiol.2009.12.015
- Huang, J., Zhu, H., Haggarty, S.J., Spring, D.R., Hwang, H., Jin, F., Snyder, M., and Schreiber, S.L. (2004). Finding new components of the target of rapamycin (TOR) signaling network through chemical genetics and proteome chips. Proc Natl Acad Sci U S A 101, 16594-16599. https://doi.org/10.1073/pnas.0407117101
- Lomenick, B., Hao, R., Jonai, N., Chin, R.M., Aghajan, M., Warburton, S., Wang, J., Wu, R.P., Gomez, F., Loo, J.A., et al. (2009). Target identification using drug affinity responsive target stability (DARTS). Proc Natl Acad Sci U S A 106, 21984-21989. https://doi.org/10.1073/pnas.0910040106
- Lomenick, B., Olsen, R.W., and Huang, J. (2011). Identification of direct protein targets of small molecules. ACS Chem Biol 6, 34-46. https://doi.org/10.1021/cb100294v
- Swoboda, J.G., Meredith, T.C., Campbell, J., Brown, S., Suzuki, T., Bollenbach, T., Malhowski, A.J., Kishony, R., Gilmore, M.S., and Walker, S. (2009). Discovery of a small molecule that blocks wall teichoic acid biosynthesis in Staphylococcus aureus. ACS Chem Biol 4, 875-883. https://doi.org/10.1021/cb900151k
- Won, J., Kim, M., Yi, Y.W., Kim, Y.H., Jung, N., and Kim, T.K. (2005). A magnetic nanoprobe technology for detecting molecular interactions in live cells. Science 309, 121-125. https://doi.org/10.1126/science.1112869
- Won, J., Kim, M., Kim, N., Ahn, J.H., Lee, W.G., Kim, S.S., Chang, K.Y., Yi, Y.W., and Kim, T.K. (2006). Small molecule-based reversible reprogramming of cellular lifespan. Nat Chem Biol 2, 369-374. https://doi.org/10.1038/nchembio800
- Nakai, R., Iida, S., Takahashi, T., Tsujita, T., Okamoto, S., Takada, C., Akasaka, K., Ichikawa, S., Ishida, H., Kusaka, H., et al. (2009). K858, a novel inhibitor of mitotic kinesin Eg5 and antitumor agent, induces cell death in cancer cells. Cancer Res 69, 3901-3909. https://doi.org/10.1158/0008-5472.CAN-08-4373
- Nagumo, Y., Kakeya, H., Shoji, M., Hayashi, Y., Dohmae, N., and Osada, H. (2005). Epolactaene binds human Hsp60 Cys442 resulting in the inhibition of chaperone activity. Biochem J 387, 835-840. https://doi.org/10.1042/BJ20041355
- Misra-press, A., McMillan, M., Cudaback, E., Qabar, M., Ruan, F., Nguyen, M., Vaisar, T., Nakanishi, H., and Kahn, M. (2002). Identification of a Novel Inhibitor of the NF-kB Pathway. Curr. Med. Chem. - Anti-Inflammatory & Anti-Allergy Agents 1, 29-39. https://doi.org/10.2174/1568014024606566
- Bedalov, A., Gatbonton, T., Irvine, W.P., Gottschling, D.E., and Simon, J.A. (2001). Identification of a small molecule inhibitor of Sir2p. Proc Natl Acad Sci U S A 98, 15113-15118. https://doi.org/10.1073/pnas.261574398
- Butcher, R.A., and Schreiber, S.L. (2003). A small molecule suppressor of FK506 that targets the mitochondria and modulates ionic balance in Saccharomyces cerevisiae. Chem Biol 10, 521-531. https://doi.org/10.1016/S1074-5521(03)00108-X
- Butcher, R.A., and Schreiber, S.L. (2004). Identification of Ald6p as the target of a class of small-molecule suppressors of FK506 and their use in network dissection. Proc Natl Acad Sci U S A 101, 7868-7873. https://doi.org/10.1073/pnas.0402317101
- Grozinger, C.M., Chao, E.D., Blackwell, H.E., Moazed, D., and Schreiber, S.L. (2001). Identification of a class of small molecule inhibitors of the sirtuin family of NAD-dependent deacetylases by phenotypic screening. J Biol Chem 276, 38837-38843. https://doi.org/10.1074/jbc.M106779200
- Zhao, Y., Dai, X., Blackwell, H.E., Schreiber, S.L., and Chory, J. (2003). SIR1, an upstream component in auxin signaling identified by chemical genetics. Science 301, 1107-1110. https://doi.org/10.1126/science.1084161
- Asami, T., Mizutani, M., Fujioka, S., Goda, H., Min, Y.K., Shimada, Y., Nakano, T., Takatsuto, S., Matsuyama, T., Nagata, N., et al. (2001). Selective interaction of triazole derivatives with DWF4, a cytochrome P450 monooxygenase of the brassinosteroid biosynthetic pathway, correlates with brassinosteroid deficiency in planta. J Biol Chem 276, 25687-25691. https://doi.org/10.1074/jbc.M103524200
- Drevs, J., Hofmann, I., Hugenschmidt, H., Wittig, C., Madjar, H., Muller, M., Wood, J., Martiny-Baron, G., Unger, C., and Marme, D. (2000). Effects of PTK787/ZK 222584, a specific inhibitor of vascular endothelial growth factor receptor tyrosine kinases, on primary tumor, metastasis, vessel density, and blood flow in a murine renal cell carcinoma model. Cancer Res 60, 4819-4824.
- Moon, H.S., Jacobson, E.M., Khersonsky, S.M., Luzung, M.R., Walsh, D.P., Xiong, W., Lee, J.W., Parikh, P.B., Lam, J.C., Kang, T.W., et al. (2002). A novel microtubule destabilizing entity from orthogonal synthesis of triazine library and zebrafish embryo screening. J Am Chem Soc 124, 11608-11609. https://doi.org/10.1021/ja026720i
- Kao, R.Y., Tsui, W.H., Lee, T.S., Tanner, J.A., Watt, R.M., Huang, J.D., Hu, L., Chen, G., Chen, Z., Zhang, L., et al. (2004). Identification of novel small-molecule inhibitors of severe acute respiratory syndrome-associated coronavirus by chemical genetics. Chem Biol 11, 1293-1299. https://doi.org/10.1016/j.chembiol.2004.07.013
- Rosania, G.R., Chang, Y.T., Perez, O., Sutherlin, D., Dong, H., Lockhart, D.J., and Schultz, P.G. (2000). Myoseverin, a microtubule-binding molecule with novel cellular effects. Nat Biotechnol 18, 304-308. https://doi.org/10.1038/73753
- Perez, O.D., Chang, Y.T., Rosania, G., Sutherlin, D., and Schultz, P.G. (2002). Inhibition and reversal of myogenic differentiation by purine-based microtubule assembly inhibitors. Chem Biol 9, 475-483. https://doi.org/10.1016/S1074-5521(02)00131-X
- Haggarty, S.J., Mayer, T.U., Miyamoto, D.T., Fathi, R., King, R.W., Mitchison, T.J., and Schreiber, S.L. (2000). Dissecting cellular processes using small molecules: identification of colchicine-like, taxol-like and other small molecules that perturb mitosis. Chem Biol 7, 275-286. https://doi.org/10.1016/S1074-5521(00)00101-0
- Haggarty, S.J., Koeller, K.M., Wong, J.C., Grozinger, C.M., and Schreiber, S.L. (2003). Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation. Proc Natl Acad Sci U S A 100, 4389-4394. https://doi.org/10.1073/pnas.0430973100
- Mayer, T.U., Kapoor, T.M., Haggarty, S.J., King, R.W., Schreiber, S.L., and Mitchison, T.J. (1999). Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science 286, 971-974. https://doi.org/10.1126/science.286.5441.971
- Williams, D., Jung, D.W., Khersonsky, S.M., Heidary, N., Chang, Y.T., and Orlow, S.J. (2004). Identification of compounds that bind mitochondrial F1F0 ATPase by screening a triazine library for correction of albinism. Chem Biol 11, 1251-1259. https://doi.org/10.1016/j.chembiol.2004.06.013
- Emami, K.H., Nguyen, C., Ma, H., Kim, D.H., Jeong, K.W., Eguchi, M., Moon, R.T., Teo, J.L., Kim, H.Y., Moon, S.H., et al. (2004). A small molecule inhibitor of beta-catenin/CREB-binding protein transcription [corrected]. Proc Natl Acad Sci U S A 101, 12682-12687. https://doi.org/10.1073/pnas.0404875101
- Chong, T., McMillan, M., Teo, J.L., Henderson, J.W.R., and Kahn, M. (2004). Chemogenomic Investigation of AP-1 Transcriptional Regulation of LTC4 Synthase Expression. Lett Drug Des Discovery 1, 211-216. https://doi.org/10.2174/1570180043398920
- Jonathan, B.W. (2002)). An approach using 'chemical genetics' has identified small-molecule agonists of the Hedgehog signaling pathway that may lead the way to drugs for chronic degenerative diseases. Journal of Biology 1, 1-7. https://doi.org/10.1186/1475-4924-1-1
- Peterson, J.R., Lokey, R.S., Mitchison, T.J., and Kirschner, M.W. (2001). A chemical inhibitor of N-WASP reveals a new mechanism for targeting protein interactions. Proc Natl Acad Sci U S A 98, 10624-10629. https://doi.org/10.1073/pnas.201393198
- Peterson, J.R., Bickford, L.C., Morgan, D., Kim, A.S., Ouerfelli, O., Kirschner, M.W., and Rosen, M.K. (2004). Chemical inhibition of N-WASP by stabilization of a native autoinhibited conformation. Nat Struct Mol Biol 11, 747-755. https://doi.org/10.1038/nsmb796
- Verma, R., Peters, N.R., D'Onofrio, M., Tochtrop, G.P., Sakamoto, K.M., Varadan, R., Zhang, M., Coffino, P., Fushman, D., Deshaies, R.J., et al. (2004). Ubistatins inhibit proteasome-dependent degradation by binding the ubiquitin chain. Science 306, 117-120. https://doi.org/10.1126/science.1100946
- Wignall, S.M., Gray, N.S., Chang, Y.T., Juarez, L., Jacob, R., Burlingame, A., Schultz, P.G., and Heald, R. (2004). Identification of a novel protein regulating microtubule stability through a chemical approach. Chem Biol 11, 135-146. https://doi.org/10.1016/j.chembiol.2003.12.019
- Min, J., Kyung Kim, Y., Cipriani, P.G., Kang, M., Khersonsky, S.M., Walsh, D.P., Lee, J.Y., Niessen, S., Yates, J.R., 3rd, Gunsalus, K., et al. (2007). Forward chemical genetic approach identifies new role for GAPDH in insulin signaling. Nat Chem Biol 3, 55-59. https://doi.org/10.1038/nchembio833
- Gao, M., Nettles, R.E., Belema, M., Snyder, L.B., Nguyen, V.N., Fridell, R.A., Serrano-Wu, M.H., Langley, D.R., Sun, J.H., O'Boyle, D.R., 2nd, et al. (2010). Chemical genetics strategy identifies an HCV NS5A inhibitor with a potent clinical effect. Nature 465, 96-100. https://doi.org/10.1038/nature08960
- Lee, M.Y., Kim, M.H., Kim, J., Kim, S.H., Kim, B.T., Jeong, I.H., Chang, S., and Chang, S.Y. (2010). Synthesis and SAR of sulfonyl- and phosphoryl amidine compounds as anti-resorptive agents. Bioorg Med Chem Lett 20, 541-545. https://doi.org/10.1016/j.bmcl.2009.11.104
- Chang, S.Y., Bae, S.J., Lee, M.Y., Baek, S.H., Chang, S., and Kim, S.H. (2011). Chemical affinity matrix-based identification of prohibitin as a binding protein to anti-resorptive sulfonyl amidine compounds. Bioorg Med Chem Lett 21, 727-729. https://doi.org/10.1016/j.bmcl.2010.11.123
- Zhang, Q., Major, M.B., Takanashi, S., Camp, N.D., Nishiya, N., Peters, E.C., Ginsberg, M.H., Jian, X., Randazzo, P.A., Schultz, P.G., et al. (2007). Small-molecule synergist of the Wnt/beta-catenin signaling pathway. Proc Natl Acad Sci U S A 104, 7444-7448. https://doi.org/10.1073/pnas.0702136104
- Chen, S., Do, J.T., Zhang, Q., Yao, S., Yan, F., Peters, E.C., Scholer, H.R., Schultz, P.G., and Ding, S. (2006). Self-renewal of embryonic stem cells by a small molecule. Proc Natl Acad Sci U S A 103, 17266-17271. https://doi.org/10.1073/pnas.0608156103
- Choi, Y., Shimogawa, H., Murakami, K., Ramdas, L., Zhang, W., Qin, J., and Uesugi, M. (2006). Chemical genetic identification of the IGF-linked pathway that is mediated by STAT6 and MFP2. Chem Biol 13, 241-249. https://doi.org/10.1016/j.chembiol.2005.12.011
Cited by
- Intrinsic fluorescence properties of antimalarial pyrido[1,2-a]benzimidazoles facilitate subcellular accumulation and mechanistic studies in the human malaria parasite Plasmodium falciparum vol.18, pp.42, 2020, https://doi.org/10.1039/d0ob01730b