DOI QR코드

DOI QR Code

EIGENVALUES OF SECOND-ORDER VECTOR EQUATIONS ON TIME SCALES WITH BOUNDARY VALUE CONDITIONS

  • Wang, Yi (School of Mathematics, Shandong University)
  • Received : 2010.03.20
  • Accepted : 2010.05.29
  • Published : 2011.01.30

Abstract

This paper is concerned with eigenvalues of second-order vector equations on time scales with boundary value conditions. Properties of eigenvalues and matrix-valued solutions are studied. Relationships between eigenvalues of different boundary value problems are discussed.

Keywords

References

  1. R. P. Agarwal and M. Bohner, Quadratic functionals for second order matrix equations on time scales, Nonlinar Anal. 7 (1998), 675-692.
  2. R. P. Agarwal, M. Bohner, and P. J. Y. Wong, Sturm-Liouville eigenvalue problems on time scales, App. Math. Comput. 99 (1999), 153-166. https://doi.org/10.1016/S0096-3003(98)00004-6
  3. R. P. Agarwal, M. Bohner, D. ORegan, and A. Peterson, Dynamic equations on time scales: A survey, J. Comput. Appl. Math. 141 (2002), 1-26. https://doi.org/10.1016/S0377-0427(01)00432-0
  4. P. Amster, C. Rogers, and C. C. Tisdell, Existence of solutions to boundary value problems for dynamic systems on time scales, J. Math. Anal. Appl. 308 (2005), 565-577. https://doi.org/10.1016/j.jmaa.2004.11.039
  5. F. M. Atici and G. Sh. Guseinov, On Green's functions and positive solutions for boundary value problems on time scales, J. Comput. Appl. Math. 141 (2002), 75-99. https://doi.org/10.1016/S0377-0427(01)00437-X
  6. F. V. Atkinson, Discrete and Continuous Boundary Problems, Academic Press Inc., New York, 1964.
  7. M. Bohner and A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications, Birkhauser, Boston Inc, Bostion, MA, 2001.
  8. M. Bohner and R. Hilscher, An eigenvalue problem for linear Hamiltonian dynamic systems, Fasciculi Mathematici 35 (2005), 35-49.
  9. S. Hilger, Ein Masskettenkalkul mit Anwendung auf Zentrumsmannigfaltigkeiten, Ph.D Thesis, Universitat Wurzburg, Wurzburg, Germany, 1988.
  10. S. Hilger, Analysis on measure chains - a unified approach to continuous and discrete calculus, Results Math. 18 (1990), 18-56. https://doi.org/10.1007/BF03323153
  11. R. Hilscher, Comparison results for solutions of time scale matrix Riccati equations and inequalities, Aust. J. Math. Anal. Appl. 2 (2006), Article 13, 1-15.
  12. W. Kratz, Quadratic Functionals in Variational Analysis and Control Theory, Akademie Verlag, Berlin, 1995.
  13. Y. Shi, Oscillation of self-adjoint second-order vector difference equations to the parameter, Comput. Math. Appl. 45 (2003), 1591-1600. https://doi.org/10.1016/S0898-1221(03)00138-X
  14. Shurong Sun, The GKN Theory and Spectral Theory of Hamiltonian Systems on Time Scales, Ph.D Thesis, Shandong University, Jinan, China, 2006.