• Title/Summary/Keyword: second-order vector equation

Search Result 20, Processing Time 0.022 seconds

EIGENVALUES OF SECOND-ORDER VECTOR EQUATIONS ON TIME SCALES WITH BOUNDARY VALUE CONDITIONS

  • Wang, Yi
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.1_2
    • /
    • pp.267-277
    • /
    • 2011
  • This paper is concerned with eigenvalues of second-order vector equations on time scales with boundary value conditions. Properties of eigenvalues and matrix-valued solutions are studied. Relationships between eigenvalues of different boundary value problems are discussed.

SECOND ORDER TANGENT VECTORS IN RIEMANNIAN GEOMETRY

  • Kwon, Soon-Hak
    • Journal of the Korean Mathematical Society
    • /
    • v.36 no.5
    • /
    • pp.959-1008
    • /
    • 1999
  • This paper considers foundational issues related to connections in the tangent bundle of a manifold. The approach makes use of second order tangent vectors, i.e., vectors tangent to the tangent bundle. The resulting second order tangent bundle has certain properties, above and beyond those of a typical tangent bundle. In particular, it has a natural secondary vector bundle structure and a canonical involution that interchanges the two structures. The involution provides a nice way to understand the torsion of a connection. The latter parts of the paper deal with the Levi-Civita connection of a Riemannian manifold. The idea is to get at the connection by first finding its.spary. This is a second order vector field that encodes the second order differential equation for geodesics. The paper also develops some machinery involving lifts of vector fields form a manifold to its tangent bundle and uses a variational approach to produce the Riemannian spray.

  • PDF

ON THE APPLICATION OF MIXED FINITE ELEMENT METHOD FOR A STRONGLY NONLINEAR SECOND-ORDER HYPERBOLIC EQUATION

  • Jiang, Ziwen;Chen, Huanzhen
    • Journal of applied mathematics & informatics
    • /
    • v.5 no.1
    • /
    • pp.23-40
    • /
    • 1998
  • Mixed finite element method is developed to approxi-mate the solution of the initial-boundary value problem for a strongly nonlinear second-order hyperbolic equation in divergence form. Exis-tence and uniqueness of the approximation are proved and optimal-order $L\infty$-in-time $L^2$-in-space a priori error estimates are derived for both the scalar and vector functions approximated by the method.

THE APPLICATION OF STOCHASTIC ANALYSIS TO COUNTABLE ALLELIC DIFFUSION MODEL

  • Choi, Won
    • Bulletin of the Korean Mathematical Society
    • /
    • v.41 no.2
    • /
    • pp.337-345
    • /
    • 2004
  • In allelic model X = ($\chi_1\chi$_2ㆍㆍㆍ, \chi_d$), M_f(t) = f(p(t)) - ${{\int^t}_0}\;Lf(p(t))ds$ is a P-martingale for diffusion operator L under the certain conditions. In this note, we can show existence and uniqueness of solution for stochastic differential equation and martingale problem associated with mean vector. Also, we examine that if the operator related to this martingale problem is connected with Markov processes under certain circumstance, then this operator must satisfy the maximum principle.

Elastic solutions due to a time-harmonic point load in isotropic multi-layered media

  • Lin, Gao;Zhang, Pengchong;Liu, Jun;Wang, Wenyuan
    • Structural Engineering and Mechanics
    • /
    • v.57 no.2
    • /
    • pp.327-355
    • /
    • 2016
  • A new analytical derivation of the elastodynamic point load solutions for an isotropic multi-layered half-space is presented by means of the precise integration method (PIM) and the approach of dual vector. The time-harmonic external load is prescribed either on the external boundary or in the interior of the solid medium. Starting with the axisymmetric governing motion equations in a cylindrical coordinate system, a second order ordinary differential matrix equation can be gained by making use of the Hankel integral transform. Employing the technique of dual vector, the second order ordinary differential matrix equation can be simplified into a first-order one. The approach of PIM is implemented to obtain the solutions of the ordinary differential matrix equation in the Hankel integral transform domain. The PIM is a highly accurate algorithm to solve sets of first-order ordinary differential equations and any desired accuracy of the dynamic point load solutions can be achieved. The numerical simulation is based on algebraic matrix operation. As a result, the computational effort is reduced to a great extent and the computation is unconditionally stable. Selected numerical trials are given to validate the accuracy and applicability of the proposed approach. More examples are discussed to portray the dependence of the load-displacement response on the isotropic parameters of the multi-layered media, the depth of external load and the frequency of excitation.

FRACTIONAL ORDER SOBOLEV SPACES FOR THE NEUMANN LAPLACIAN AND THE VECTOR LAPLACIAN

  • Kim, Seungil
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.3
    • /
    • pp.721-745
    • /
    • 2020
  • In this paper we study fractional Sobolev spaces characterized by a norm based on eigenfunction expansions. The goal of this paper is twofold. The first one is to define fractional Sobolev spaces of order -1 ≤ s ≤ 2 equipped with a norm defined in terms of Neumann eigenfunction expansions. Due to the zero Neumann trace of Neumann eigenfunctions on a boundary, fractional Sobolev spaces of order 3/2 ≤ s ≤ 2 characterized by the norm are the spaces of functions with zero Neumann trace on a boundary. The spaces equipped with the norm are useful for studying cross-sectional traces of solutions to the Helmholtz equation in waveguides with a homogeneous Neumann boundary condition. The second one is to define fractional Sobolev spaces of order -1 ≤ s ≤ 1 for vector-valued functions in a simply-connected, bounded and smooth domain in ℝ2. These spaces are defined by a norm based on series expansions in terms of eigenfunctions of the vector Laplacian with boundary conditions of zero tangential component or zero normal component. The spaces defined by the norm are important for analyzing cross-sectional traces of time-harmonic electromagnetic fields in perfectly conducting waveguides.

Stochastic Response of a Hinged-Clamped Beam (Hinged-clamped 보의 확률적 응답특성)

  • Cho, Duk-Sang
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.3 no.1
    • /
    • pp.43-51
    • /
    • 2000
  • The response statistics of a hinged-clamped beam under broad-band random excitation is investigated. The random excitation is applied at the nodal point of the second mode. By using Galerkin's method the governing equation is reduced to a system of nonautonomous nonlinear ordinary differential equations. A method based upon the Markov vector approach is used to generate a general first-order differential equation in the dynamic moment of response coordinates. By means of the Gaussian and non-Gaussian closure methods the dynamic moment equations for the random responses of the system are reduced to a system of autonomous ordinary differential equations. The case of two mode interaction is considered in order to compare it with the case of three mode interaction. The analytical results for two and three mode interactions are also compared with results obtained by Monte Carlo simulation.

  • PDF

Development and Application of High-resolution 3-D Volume PIV System by Cross-Correlation (해상도 3차원 상호상관 Volume PIV 시스템 개발 및 적용)

  • Kim Mi-Young;Choi Jang-Woon;Lee Hyun;Lee Young-Ho
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.507-510
    • /
    • 2002
  • An algorithm of 3-D particle image velocimetry(3D-PIV) was developed for the measurement of 3-D velocity Held of complex flows. The measurement system consists of two or three CCD camera and one RGB image grabber. Flows size is $1500{\times}100{\times}180(mm)$, particle is Nylon12(1mm) and illuminator is Hollogen type lamp(100w). The stereo photogrammetry is adopted for the three dimensional geometrical mesurement of tracer particle. For the stereo-pair matching, the camera parameters should be decide in advance by a camera calibration. Camera parameter calculation equation is collinearity equation. In order to calculate the particle 3-D position based on the stereo photograrnrnetry, the eleven parameters of each camera should be obtained by the calibration of the camera. Epipolar line is used for stereo pair matching. The 3-D position of particle is calculated from the three camera parameters, centers of projection of the three cameras, and photographic coordinates of a particle, which is based on the collinear condition. To find velocity vector used 3-D position data of the first frame and the second frame. To extract error vector applied continuity equation. This study developed of various 3D-PIV animation technique.

  • PDF

Speed Control of Induction Motor Systems by Design Method of Digital Servo System (디지탈 서보계 설계법에 의한 유도 전동기 시스템의 속도 제어)

  • 김상봉;김환성;이동철;하주식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.16 no.4
    • /
    • pp.50-59
    • /
    • 1992
  • The paper presents a digital speed control approach of induction motor systems by using a digital servo control method and a well-known second order differential equation as model. The basic concept of using the modeling equation stated in the above is induced from the control theory stand point such that we can describe usually the motor system connected by inverter, generator and load etc, just as a mechanical system to be controlled. The concept does not demand us the complicated vector-based modeling equation adopted in the traditional methods for the speed control of induction motor. Futhermore, the proposed speed control system can be treated as a single input and single output system. The effectiveness of the servo control system obtained by the above-mentioned design concept is illustrated by the experimental results in the presence of both step reference changes and load variations. It is observed from the experimental results that the steady state-error of the experimental set up becomes zero after some regulation time and the induction motor system is robust in spite of reference signal changes and load variations.

  • PDF

HELICOIDAL MINIMAL SURFACES IN A CONFORMALLY FLAT 3-SPACE

  • Araujo, Kellcio Oliveira;Cui, Ningwei;Pina, Romildo da Silva
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.2
    • /
    • pp.531-540
    • /
    • 2016
  • In this work, we introduce the complete Riemannian manifold $\mathbb{F}_3$ which is a three-dimensional real vector space endowed with a conformally flat metric that is a solution of the Einstein equation. We obtain a second order nonlinear ordinary differential equation that characterizes the helicoidal minimal surfaces in $\mathbb{F}_3$. We show that the helicoid is a complete minimal surface in $\mathbb{F}_3$. Moreover we obtain a local solution of this differential equation which is a two-parameter family of functions ${\lambda}_h,K_2$ explicitly given by an integral and defined on an open interval. Consequently, we show that the helicoidal motion applied on the curve defined from ${\lambda}_h,K_2$ gives a two-parameter family of helicoidal minimal surfaces in $\mathbb{F}_3$.