References
- Banasiak, L.J. and Schafer, A.I. (2009), "Removal of boron, fluoride and nitrate by electrodialysis in the presence of organic matter", J. Membrane Sci., 334(1-2), 101-109. https://doi.org/10.1016/j.memsci.2009.02.020
- Bowen, W.R. and Welfoot, J.S. (2002), "Modelling the performance of membrane nanofiltration-critical assessment and model development", Chem. Eng. Sci., 57(7), 1121-1137. https://doi.org/10.1016/S0009-2509(01)00413-4
- Brandt, S. (1976), Metody statystyczne i obliczeniowe analizy danych, PWN, Warszawa.
- Cattoirs, S., Smets, D. and Rahier, A. (1999), "The use of electro-electrodialysis for the removal of sulphuric acid from decontamination effluents", Desalination, 121(2), 123-130. https://doi.org/10.1016/S0011-9164(99)00013-2
- Dresner, L. (1972), "Stability of the extended Nernst-Planck equations in the description of hyperfiltration through ion-exchange membranes", J. Phys. Chem., 76(16), 2256-2267. https://doi.org/10.1021/j100660a015
-
Edwards, O.W. and Huffman, E.O. (1959), "Diffusion of aqueous solutions of phosphoric acid at
$25^{\circ}$ ", J. Phys. Chem., 63(11), 1830-1833. https://doi.org/10.1021/j150581a011 - Jorissen, J., Breiter, S.M. and Funk, C. (2003), "Ion transport in anion exchange membranes in presence of multivalent anions like sulfate or phosphate", J. Membrane Sci., 213(1-2), 247-261. https://doi.org/10.1016/S0376-7388(02)00532-X
- Koter, S. and Warszawski, A. (2000), "Electromembrane processes in environment protection", Polish J. Environ. Studies, 1, 45-56.
- Koter, S. (2008), "Separation of weak and strong acids by electro-electrodialysis-experiment and theory", Sep. Purif. Technol., 60(3), 251-258. https://doi.org/10.1016/j.seppur.2007.08.017
- Koter, S. and Kultys, M. (2008), "Electric transport of sulfuric acid through anion-exchange membranes in aqueous solutions", J. Membrane Sci., 318(1-2), 467-476. https://doi.org/10.1016/j.memsci.2008.03.010
- Koter, S. and Kultys, M. (2010), "Modeling the electric transport of sulfuric and phosphoric acids through anionexchange membranes", Separation and Purification Technology, 73(2), 219-229. https://doi.org/10.1016/j.seppur.2010.04.005
- Leaist, D.G. (1984a), Diffusion in Dilute Aqueous Solutions of Phosphoric Acid, J. Chem. Soc., Faraday Trans. I, 80, 3041-3050. https://doi.org/10.1039/f19848003041
- Leaist, D.G. (1984b), "Diffusion in aqueous solutions of sulfuric acid", Can. J. Chem., 62, 1692-1697. https://doi.org/10.1139/v84-290
- Lorrain, Y., Pourcelly, G. and Gavach, C. (1997), "Transport mechanism of sulfuric acid through an anion exchange membrane", Desalination, 109(3), 231-239. https://doi.org/10.1016/S0011-9164(97)00069-6
- Luo, J., Wu, C., Xu, T. and Wua, Y. (2011), "Diffusion dialysis-concept, principle and applications", J. Membrane Sci., 366(1-2), 1-16. https://doi.org/10.1016/j.memsci.2010.10.028
- Meares, P. (1981), "Coupling of ion and water fluxes in synthetic membranes", J. Membrane Sci., 8(3), 295-307. https://doi.org/10.1016/S0376-7388(00)82317-0
- Melnyk, L. and Goncharuk, V. (2009), Electrodialysis of solutions containing Mn (II) ions, Desalination, 241(1-3), 49-56. https://doi.org/10.1016/j.desal.2007.11.082
- Nagarale, R.K., Gohil, G.S. and Shahi, V.K. (2006), "Recent developments on ion-exchange membranes and electro-membrane processes", Adv. Colloid Interf. Sci., 119(2-3), 97-130. https://doi.org/10.1016/j.cis.2005.09.005
- Nikonenko, V., Lebedev, K., Manzanares, J.A. and Pourcelly, G. (2003), "Modelling the transport of carbonic acid anions through anion-exchange membranes", Electrochim. Acta, 48(24), 3639-3650. https://doi.org/10.1016/S0013-4686(03)00485-7
- Palaty, Z. and Zakova, A. (2001), "Transport of hydrochloric acid through anion-exchange membrane NEOSEPTA-AFN. Application of Nernst-Planck equation", J. Membrane Sci., 189(2), 205-216. https://doi.org/10.1016/S0376-7388(01)00407-0
- Palaty, Z. and Zakova, A. (2003), "Transport of some strong incompletely dissociated acids through anionexchange membrane", J. Coll. Interf. Sci., 268(1), 188-199. https://doi.org/10.1016/j.jcis.2003.07.034
- Peeters, J.M.M., Boom, J.P., Mulder, M.H.V. and Strathmann H. (1998), "Retention measurements of nanofiltration membranes with electrolyte solutions", J. Membrane Sci., 145(2), 199-209. https://doi.org/10.1016/S0376-7388(98)00079-9
-
Pisarska, B. and Dylewski, R. (2005), "Analysis of Preparation Conditions of
$H_{2}SO_{4}$ and NaOH from Sodium Sulfate Solutions by Electrodialysis", Russian J. Appl. Chem., 78, 1288-1293. https://doi.org/10.1007/s11167-005-0500-z - Pourcelly, G., Tugas, I. and Gavach, C. (1994), "Electrotransport of sulphuric acid in special anion exchange membranes for the recovery of acids", J. Membrane Sci., 97(27), 99-107. https://doi.org/10.1016/0376-7388(94)00152-O
- Prado-Rubio, O.A., Mollerhoj, M., Jorgensen, S.B. and Jonsson, G. (2010), "Modeling Donnan dialysis separation for carboxylic anion recovery", Comp. Chem. Eng., 34(10), 1567-1579. https://doi.org/10.1016/j.compchemeng.2010.03.003
- Robinson, R.A. and Stokes, R.H. (1959), Electrolyte Solutions, Butterworths, London.
- Scott, K. (1995), Handbook of Industrial Membranes, Elsevier Advanced Technology, Oxford.
- Touaibia, D., Kerdjoudj, H. and Cherif, A.T. (1996), "Concentration and purification of wet industrial phosphoric acid by electro-electrodialysis", J. Appl. Electrochem., 26(10), 1071-1073.
Cited by
- Concentration of Sodium Hydroxide Solutions by Electrodialysis vol.47, pp.9, 2012, https://doi.org/10.1080/01496395.2012.672524
- Treatment of organic dye solutions by electrodialysis vol.4, pp.3, 2013, https://doi.org/10.12989/mwt.2013.04.3.203
- Modeling the transport of sulfuric acid and its sulfates (MgSO4, ZnSO4, Na2SO4) through an anion-exchange membrane vol.342, 2014, https://doi.org/10.1016/j.desal.2013.10.025
- Continuous ion-exchange membrane electrodialysis of mother liquid discharged from a salt-manufacturing plant and transport of Cl- ions and SO42- ions vol.3, pp.1, 2011, https://doi.org/10.12989/mwt.2012.3.1.063