DOI QR코드

DOI QR Code

The Caudal-Related Homeodomain Proteins Upregulate catalase Expression in Drosophila Hindgut and Human Colorectal Carcinoma Cells

초파리 대장조직과 인간 대장암세포주에서의 caudal 단백질에 의한 catalase 발현 조절

  • Park, Jae-Hong (Department of Molecular Biology, Pusan National University) ;
  • Park, So-Young (Department of Molecular Biology, Pusan National University) ;
  • Lee, Dong-Ho (Department of Molecular Biology, Pusan National University) ;
  • Kim, Young-Shin (Department of Research Institute of Genetic Engineering, Pusan National University) ;
  • Yoo, Mi-Ae (Department of Molecular Biology, Pusan National University)
  • 박재홍 (부산대학교 분자생물학과) ;
  • 박소영 (부산대학교 분자생물학과) ;
  • 이동호 (부산대학교 분자생물학과) ;
  • 김영신 (부산대학교 유전공학연구소) ;
  • 유미애 (부산대학교 분자생물학과)
  • Received : 2010.12.07
  • Accepted : 2011.01.04
  • Published : 2011.02.28

Abstract

Caudal-related homeodomain proteins play critical roles in intestine development and maintenance from Drosophila to humans. The loss or reduction of CDX1 and CDX2 are known to be associated with colon cancers. It has been well known that colorectal carcinogenesis is associated with serious oxidative stress and that catalase is decreased in colon carcinomas. However, the underlying molecular mechanisms remain elusive. Here, we report that Caudal-related homeodomain proteins positively regulate catalase expression in both Drosophila and humans. We found that Drosophila caudal heterozygotes have a decreased catalase expression and increased ROS generation in the hindgut, and that the overexpression of Caudal increases catalase promoter activity and catalase mRNA levels. We also found that CDX1 and CDX2 up-regulate catalase promoter activity and protein levels in HCT116 cells - human colorectal carcinoma cell lines. The level of catalase protein in several colorectal carcinoma cell lines was associated with CDX1 expression. These results suggest that CDX1 and CDX2 may be involved in intestinal homeostasis and tumorigenesis via regulation of catalase expression.

Caudal homeodomain 단백질은 초파리에서 사람에 이르기까지 보존되어 있으며, 장조직의 발생과 유지에 필수적인 역할을 한다. CDX1과 CDX2의 발현 감소 혹은 소실이 대장암과 연관되어 있음이 잘 알려져 있다. 대장암 발생은 산화성 스트레스와 밀접한 관련이 있으며, 대장암 조직에서 항산화효소인 catalase의 발현이 감소되어 있다. 하지만 그 분자적 기전은 잘 밝혀져 있지 않다. 본 연구에서는 초파리와 사람의 caudal homeodomain 단백질들이 catalase의 발현을 조절하는 것을 보여준다. 초파리 caudal heterozygous 돌연변이체의 대장조직에서 catalase의 발현이 감소되어 있고 ROS 생성이 증가되어 있음을 관찰하였다. 그리고 caudal 유전자의 과발현에 의해 catalase promoter의 활성과 mRNA 수준이 각각 증가함을 확인하였다. 또한 사람의 대장암 세포주인 HCT116 세포에서 CDX1과 CDX2가 catalase promoter의 활성과 단백질 수준에서 catalase를 상향 조절함을 관찰하였다. 이러한 결과들은 CDX1과 CDX2가 catalase 발현 조절을 통하여 장의 항상성 유지와 암발생 과정에 관여함을 시사한다.

Keywords

References

  1. Albuszies, G. and U. B. Bruckner. 2003. Antioxidant therapy in sepsis. Intensive Care Med. 29, 1632-1636. https://doi.org/10.1007/s00134-003-1861-5
  2. Almeida, R., E. Silva, F. Santos-Silva, D. G. Silberg, J. Wang, C. De Bolos, and L. David. 2003. Expression of intestine- specific transcription factors, CDX1 and CDX2, in intestinal metaplasia and gastric carcinomas. J. Pathol. 199, 36-40. https://doi.org/10.1002/path.1246
  3. Baba Y., K. Nosho, K. Shima, E. Freed, N. Irahara, J. Philips, J. A. Meyerhardt, J. L. Hornick, R. A. Shivdasani, C. S. Fuchs, and S. Ogino. 2009. Relationship of CDX2 loss with molecular features and prognosis in colorectal cancer. Clin. Cancer Res. 15, 4665-4673. https://doi.org/10.1158/1078-0432.CCR-09-0401
  4. Bartsch, H., J. Nair, and R. W. Owen. 2002. Exocyclic DNA adducts as oxidative stress markers in colon carcinogenesis: potential role of lipid peroxidation, dietary fat and antioxidants. Biol. Chem. 383, 915-921. https://doi.org/10.1515/BC.2002.098
  5. Butler, H., S. Levine, X. Wang, S. Bonyadi, G. Fu, P. Lasko, B. Suter, and R. Doerig. 2001. Map position and expression of the genes in the 38 region of Drosophila. Genetics 158, 1597-1614.
  6. Chawengsaksophak, K., R. James, V. E. Hammond, F. Kontgen, and F. Beck. 1997. Homeosis and intestinal tumours in Cdx2 mutant mice. Nature 386, 84-87. https://doi.org/10.1038/386084a0
  7. Choi, Y. J., T. Y. Choi, M. Yamaguchi, A. Matsukage, Y. S. Kim, and M. A. Yoo. 2004. Transcriptional regulation of the Drosophila caudal homeobox gene by DRE/DREF. Nucleic Acids Res. 32, 3734-3742. https://doi.org/10.1093/nar/gkh688
  8. Crissey, M. A., R. J. Guo, S. Funakoshi, J. Kong, J. Liu, and J. P. Lynch. 2010. Cdx2 levels modulate intestinal epithelium maturity and Paneth cell development. Gastroenterology 140, 517-528.
  9. Cuzzocrea, S., D. P. Riley, A. P. Caputi, and D. Salvemini. 2001. Antioxidant therapy: a new pharmacological approach in shock, inflammation, and ischemia/reperfusion injury. Pharmacol. Rev. 53, 135-159.
  10. Domon-Dell, C., A. Schneider, V. Moucadel, E. Guerin, D. Guenot, S. Aguillon, I. Duluc, E. Martin, J. Iovanna, J. F. Launay, B. Duclos, M. P. Chenard, C. Meyer, P. Oudet, M. Kedinger, M. P. Gaub, and J. N. Freund. 2003. Cdx1 homeobox gene during human colon cancer progression. Oncogene 22, 7913-7921. https://doi.org/10.1038/sj.onc.1206756
  11. Fischer, J. A., E. Giniger, T. Maniatis, and M. Ptashne. 1988. GAL4 activates transcription in Drosophila. Nature 332, 853-856. https://doi.org/10.1038/332853a0
  12. Gupta, A., S. F. Rosenberger, and G. T. Bowden. 1999. Increased ROS levels contribute to elevated transcription factor and MAP kinase activities in malignantly progressed mouse keratinocyte cell lines. Carcinogenesis 20, 2063-2073. https://doi.org/10.1093/carcin/20.11.2063
  13. Han, K. 1996. An efficient DDAB-mediated transfection of Drosophila S2 cells. Nucleic Acids Res. 24, 4362-4363. https://doi.org/10.1093/nar/24.21.4362
  14. Hunt, C. R., J. E. Sim, S. J. Sullivan, T. Featherstone, W. Golden, C. Von Kapp-Herr, R. A. Hock, R. A. Gomez, A. J. Parsian, and D. R. Spitz. 1998. Genomic instability and catalase gene amplification induced by chronic exposure to oxidative stress. Cancer Res. 58, 3986-3992.
  15. Hwang, M. S., Y. S. Kim, N. H. Choi, J. H. Park, E. J. Oh, E. J Kwon, M. Yamaguchi, and M. A. Yoo. 2002. The caudal homeodomain protein activates Drosophila E2F gene expression. Nucleic Acids Res. 30, 5029-5035. https://doi.org/10.1093/nar/gkf640
  16. Jackson, A. L. and L. A. Loeb. 2001. The contribution of endogenous sources of DNA damage to the multiple mutations in cancer. Mutat. Res. 477, 7-21. https://doi.org/10.1016/S0027-5107(01)00091-4
  17. Joseph, P., T. K. Muchnok, M. L. Klishis, J. R. Roberts, J. M. Antonini, W. Z. Whong, and T. Ong. 2001. Cadmium-induced cell transformation and tumorigenesis are associated with transcriptional activation of c-fos, c-jun, and c-myc proto-oncogenes: role of cellular calcium and reactive oxygen species. Toxicol. Sci. 61, 295-303. https://doi.org/10.1093/toxsci/61.2.295
  18. Kessel, M. and P. Gruss. 1990. Murine developmental control genes. Science 249, 374-379. https://doi.org/10.1126/science.1974085
  19. Kim, H. S., T. B. Lee, and C. H. Choi. 2001. Down-regulation of catalase gene expression in the doxorubicin-resistant AML subline AML-2/DX100. Biochem. Biophys. Res. Commun. 281, 109-114. https://doi.org/10.1006/bbrc.2001.4324
  20. Kuhnlein, R. P., G. Bronner, H. Taubert, and R. Schuh. 1997. Regulation of Drosophila spalt gene expression. Mech. Dev. 66, 107-118. https://doi.org/10.1016/S0925-4773(97)00103-2
  21. Lauer, C., A. Volkl, S. Riedl, H. D. Fahimi, and K. Beier. 1999. Impairment of peroxisomal biogenesis in human colon carcinoma. Carcinogenesis 20, 985-989. https://doi.org/10.1093/carcin/20.6.985
  22. Lewis, A. D., I. D. Hickson, C. N. Robson, A. L. Harris, J. D. Hayes, S. A. Griffiths, M. M. Manson, A. E. Hall, J. E. Moss, and C. R. Wolf. 1988. Amplification and increased expression of alpha class glutathione S-transferase-encoding genes associated with resistance to nitrogen mustards. Proc. Natl. Acad. Sci. USA 85, 8511- 8515. https://doi.org/10.1073/pnas.85.22.8511
  23. Lewis, M. T. 2000. Homeobox genes in mammary gland development and neoplasia. Breast Cancer Res. 2, 158-169. https://doi.org/10.1186/bcr49
  24. Luo, D. and T. A. Rando. 2003. The regulation of catalase gene expression in mouse muscle cells is dependent on the CCAAT-binding factor NF-Y. Biochem. Biophys. Res. Commun. 303, 609-618. https://doi.org/10.1016/S0006-291X(03)00397-8
  25. Mallo, G. V., H. Rechreche, J. M. Frigerio, D. Rocha, A. Zweibaum, M. Lacasa, B. R. Jordan, N. J. Dusetti, J. C. Dagorn, and J. L. Iovanna. 1997. Molecular cloning, sequencing and expression of the mRNA encoding human Cdx1 and Cdx2 homeobox. Down-regulation of Cdx1 and Cdx2 mRNA expression during colorectal carcinogenesis. Int. J. Cancer 74, 35-44. https://doi.org/10.1002/(SICI)1097-0215(19970220)74:1<35::AID-IJC7>3.0.CO;2-1
  26. McGinnis, W. and R. Krumlauf. 1992. Homeobox genes and axial patterning. Cell 68, 283-302. https://doi.org/10.1016/0092-8674(92)90471-N
  27. Michiels, C., M. Raes, O. Toussaint, and J. Remacle. 1994. Importance of Se-glutathione peroxidase, catalase, and Cu/Zn-SOD for cell survival against oxidative stress. Free Radic. Biol. Med. 17, 235-248. https://doi.org/10.1016/0891-5849(94)90079-5
  28. Nenoi, M., S. Ichimura, K. Mita, O. Yukawa, and I. L. Cartwright. 2001. Regulation of the catalase gene promoter by Sp1, CCAAT-recognizing factors, and a WT1/Egr-related factor in hydrogen peroxide-resistant HP100 cells. Cancer Res. 61, 5885-5894.
  29. Park, S. Y., Y.S. Kim, D. J. Yang, and M. A. Yoo. 2004. Transcriptional regulation of the Drosophila catalase gene by the DRE/DREF system. Nucleic Acids Res. 32, 1318-1324. https://doi.org/10.1093/nar/gkh302
  30. Ren, P., D. G. Silberg, and A. E. Sirica. 2000. Expression of an intestine-specific transcription factor (CDX1) in intestinal metaplasia and in subsequently developed intestinal type of cholangiocarcinoma in rat liver. Am. J. Pathol. 156, 621-627. https://doi.org/10.1016/S0002-9440(10)64766-9
  31. Rhee, S. G. 1999. Redox signaling: hydrogen peroxide as intracellular messenger. Exper. Mol. Med. 35, 53-59.
  32. Sanders, L. M., C. E. Henderson, M. Y. Hong, R. Barhoumi, R. C. Burghardt, N. Wang, C. M. Spinka, R. J. Carroll, N. D. Turner, R. S. Chapkin, and J. R. Lupton. 2004. An increase in reactive oxygen species by dietary fish oil coupled with the attenuation of antioxidant defenses by dietary pectin enhances rat colonocyte apoptosis. J. Nutr. 134, 3233-3238.
  33. Silberg, D. G., G. P. Swain, E. R. Suh, and P. G. Traber. 2000. Cdx1 and Cdx2 expression during intestinal development. Gastroenterology 119, 961-971. https://doi.org/10.1053/gast.2000.18142
  34. Skrzydlewska, E., S. Sulkowski, M. Koda, B. Zalewski, L. Kanczuga-Koda, and M. Sulkowska. 2005. Lipid peroxidation and antioxidant status in colorectal cancer. World J. Gastroenterol. 11, 403-406. https://doi.org/10.3748/wjg.v11.i3.403
  35. Tsutsumishita, Y., T. Onda, K. Okada, M. Takeda, H. Endou, S. Futaki, and M. Niwa. 1998. Involvement of $H_2O_2$ production in cisplatin-induced nephrotoxicity. Biochem. Biophys. Res. Commun. 242, 310-312. https://doi.org/10.1006/bbrc.1997.7962
  36. Van Remmen, H., M. D. Williams, H. Yang, C. A. Walter, and A. Richardson. 1998. Analysis of the transcriptional activity of the 5'-flanking region of the rat catalase gene in transiently transfected cells and in transgenic mice. J. Cell Physiol. 174, 18-26. https://doi.org/10.1002/(SICI)1097-4652(199801)174:1<18::AID-JCP3>3.0.CO;2-J
  37. Wang, W. W., D. L. Smith, and S. D. Zucker. 2004. Bilirubin inhibits iNOS expression and NO production in response to endotoxin in rats. Hepatology 40, 424-433.
  38. Werling, R. W., H. Yaziji, C. E. Bacchi, and A. M. Gown. 2003. CDX2, a highly sensitive and specific marker of adenocarcinomas of intestinal origin: an immunohistochemical survey of 476 primary and metastatic carcinomas. Am. J. Surg. Pathol. 27, 303-310. https://doi.org/10.1097/00000478-200303000-00003
  39. de Winter, B. Y., L. van Nassauw, J. G. de Man, F. de Jonge, A. J. Bredenoord, T. C. Seerden, A. G. Herman, J. P. Timmermans, and P. A. Pelckmans. 2005. Role of oxidative stress in the pathogenesis of septic ileus in mice. Neurogastroenterol. Motil. 17, 251-261. https://doi.org/10.1111/j.1365-2982.2004.00618.x
  40. Wong, N. A., M. P. Britton, G. S. Choi, T. K. Stanton, D. C. Bicknell, J. L. Wilding, and W. F. Bodmer. 2004. Loss of CDX1 expression in colorectal carcinoma: promoter methylation, mutation, and loss of heterozygosity analyses of 37 cell lines. Proc. Natl. Acad. Sci. USA 101, 574-579. https://doi.org/10.1073/pnas.0307190101
  41. Wu, L. H. and J. A. Lengyel. 1998. Role of caudal in hindgut specification and gastrulation suggests homology between Drosophila amnioproctodeal invagination and vertebrate blastopore. Development 125, 2433-2442.
  42. Zhu, J. W., B. M. Yu, Y. B. Ji, M H. Zheng, and D. H. Li. 2002. Upregulation of vascular endothelial growth factor by hydrogen peroxide in human colon cancer. World J. Gastroenterol. 8, 153-157.