DOI QR코드

DOI QR Code

A Noise-Robust Measuring Algorithm for Small Tubes Based on an Iterative Statistical Method

통계적 반복법에 기반한 노이즈에 강한 소형튜브 측정 알고리즘 개발

  • 김형석 (울산대학교 지능형자동차부품기술개발팀) ;
  • ;
  • 이병룡 (울산대학교 기계자동차공학부)
  • Received : 2010.07.05
  • Accepted : 2010.12.17
  • Published : 2011.02.01

Abstract

We propose a novel algorithm for measuring the radius of tubes. This proposed algorithm is capable of effectively removing added noise and measuring the radius of tubes within allowable precision. The noise is removed by using a candidate true center that minimizes the standard deviation with respect to the radius. Further, the disconnection in data points resulting from noise removal is solved by using a connection algorithm. The final step of the process is repeated until the value of the standard deviation decreases to a small predefined value. Experiments were performed using circle geometries with added noise and a real tube with complex noise and that is used in the braking units of automobiles. It was concluded that the measurement carried out using the algorithm was accurate within 1.4%, even with 15% added noise.

최근 컴퓨터비전을 이용하여 부품의 치수를 정확하게 그리고 빠르게 측정하고자 하는 연구가 많이 진행되고 있다. 하지만 컴퓨터비전의 경우 조명이 완벽하지 않으면 노이즈가 많이 발생하는 경우가 있다. 실제 산업현장에서는 기계들 간의 간섭에 의해 완벽한 조명을 구현하기 어렵기 때문에 노이즈를 피하기 어렵다. 본 논문에서는 튜브의 내경 반지름 측정 시 문제가 되는 노이즈를 효과적으로 제거하고 반지름 측정의 정밀도를 향상시키기 위한 컴퓨터 비전 측정 알고리즘을 제안한다. 표준편차가 최소가 되는 중심점을 이용하여 노이즈를 제거하고 이 때 발생되는 원호상의 불연속 문제는 원호 연결 알고리즘으로 해결하였다. 제안된 알고리즘의 성능은 노이즈가 추가된 원과 실제 튜브의 영상을 이용한 실험을 통해 증명하였다. 15%의 수준의 노이즈가 추가된 원의 반경을 구하는 실험에서도 1.4% 수준의 오차를 보여주어 본 알고리즘의 유용성을 확인할 수 있었다.

Keywords

References

  1. Liao, C. W., Su, J. C. and Tarng, Y. S., 2008, “Application of the Structured Illumination Method for Automated Visual Inspection of the Loudspeaker Cones,” Jr. of Materials Processing Technology, Vol. 200, No. 1-3, pp. 59-70. https://doi.org/10.1016/j.jmatprotec.2007.11.262
  2. Shafeek, H. I., Gadelmawla, E. S., Abdel-Shafy, A. A. and Elewa, I. M., 2004,“Automatic Inspection of Gas Pipeline Welding Defects Using an Expert Vision System,” NDT & E International, Vol. 37, No. 4, pp. 301-307. https://doi.org/10.1016/j.ndteint.2003.10.004
  3. Chan, C. and Grantham, K.H., 2000, “Fabric Defect Detection by Fourier Analysis,” IEEE Trans Ind. Appl., Vol. 36, No. 5, pp. 1267-1275. https://doi.org/10.1109/28.871274
  4. Rao, B.P.C., 2001, “Visual Techniques in Non-Destructive Testing,” Encyclopedia of Materials: Science and Technology, pp. 6043-6046.
  5. Hong, K. H., 2006, “A New Circle Detection Algorithm for Pupil and Iris Segmentation from the Occluded RGB images,” The Journal of the Korea Contents Association. pp. 22-26.
  6. Kim, H. S. and Lee, B. R., 2006, “Real-Time Pipe Fault Detection System using Computer Vision,” IJPEM, 7(1), 30-34.
  7. Rokhmatuloh, Tateishi, Wikantika, R., Munadi, K. and Aslam, A. M. A., 2003, “Study on the Spectral Quality Preservation Derived from Multisensor Image Fusion Techniques Between JERS-1 SAR and Landsat TM data,” IGARSS '03, Vol. 6, pp. 3656-3658.
  8. Lu, C. J. and Tsai, D.M., 2004, “Defect Inspection of Patterned TFT-LCD Panels Using a Fast Sub-Image Based SVD,” International Journal of Production Research, Vol. 42, pp. 4331-4351. https://doi.org/10.1080/00207540410001716480
  9. Wang, F. F., Wang, Z., Mo, X. T., Wang, P., Liu, M., Ren, L., Zhu, Y., Zhang, F. and Liu, W. Y., 2007, “Machine Vision Inspection System for Film,” Machine Vision Inspection System, Vol. 27, No. 3, pp. 212-216.
  10. Kumar, B. K., Lakshminarayana, A., Kulgod, S. V., Deshpande, P. P., Palod, S., Singh, V. P. and Rao, G. V. S. H., 2006, “Vision Systems for Inspection of Nuclear Fuel Components,” Proc. NDE.
  11. Lee, M. R., 2000, “Machine Vision System for Curved Surface Inspection,” Mach. Vision Appl., pp. 177-188.
  12. Ponsa, D., Benavente, R., Lumbreras, F., Martinez, J. and Roca, X., 2003, “Quality Control of Safety Belts by Machine Vision Inspection for Real-Time Production,” Opt. Eng., Vol. 42, No. 4.
  13. Yun, J. P., Choi, S. H., Seo, B. Y. and Kim, S. W., 2008, “Real-Time Vision-Based Defect Inspection for High-Speed Steel Products,” Opt. Eng., Vol. 57, No.7.
  14. Zhang, H., Wu, G., Sun, X., Xu, J. and Xu, K., 2007, “A New Fast Border Search Algorithm and Its Expansion,” Proc. IEEE Intl. Conf. Automation Logistics, pp. 1886-1890.
  15. Denzler, J. and Brown, C., 2002, “Information Theoretic Sensor Data Selection for Active Object Recognition and State Estimation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 24, pp. 145-157. https://doi.org/10.1109/34.982896
  16. Arbel, T. and Ferrie, F., 2001, “Entropy-Based Gaze Planning,” Image and Vision Computing, Vol. 19, No. 11, pp. 779-786. https://doi.org/10.1016/S0262-8856(00)00103-7

Cited by

  1. Radius-Measuring Algorithm for Small Tubes Based on Machine Vision using Fuzzy Searching Method vol.35, pp.11, 2011, https://doi.org/10.3795/KSME-A.2011.35.11.1429