DOI QR코드

DOI QR Code

Ku-대역 BiCMOS 저잡음 증폭기 설계

Design of Ku-Band BiCMOS Low Noise Amplifier

  • Chang, Dong-Pil (Electronics and Telecommunications Research Institute) ;
  • Yom, In-Bok (Electronics and Telecommunications Research Institute)
  • 발행 : 2011.02.28

초록

0.25 um SiGe BiCMOS 공정을 이용하여 Ku-대역 저잡음 증폭기가 설계 및 제작되었다. 개발된 Ku-대역 저잡음 증폭기는 BiCMOS 공정의 HBT 소자를 이용하여 설계되었으며, 9~14 GHz 대역에서 2.05 dB 이하의 잡음 지수 특성과 19 dB 이상의 이득 특성을 가지고 있다. 제조 공정과 관련되어 제공된 PDK의 부정확성 및 부족한 인덕터 라이브러리를 보완하기 위하여 p-tap 값 최적화와 인덕터의 EM 시뮬레이션 기법 등을 활용하였다. 총 2회의 제작 공정을 수행하였으며, 최종 제작된 Ku-대역 저잡음 증폭기는 $0.65\;mm{\times}0.55\;mm$의 크기로 구현되었다. 특히 최종 제작된 저잡음 증폭기의 레이아웃에서 입/출력 RF Pad와 Bias Pad 등을 제외하고 약 $0.4\;mm{\times}0.4\;mm$ 정도의 크기를 갖도록 조정되어 다기능 RFIC의 증폭단으로 활용되었다.

A Ku-band low noise amplifier has been designed and fabricated by using 0.25 um SiGe BiCMOS process. The developed Ku-band LNA RFIC which has been designed with hetero-junction bipolar transistor(HBT) in the BiCMOS process have noise figure about 2.0 dB and linear gain over 19 dB in the frequency range from 9 GHz to 14 GHz. Optimization technique for p-tap value and electro-magnetic(EM) simulation technique had been used to overcome the inaccuracy in the PDK provided from the foundry service company and to supply the insufficient inductor library. The finally fabricated low noise amplifier of two fabrication runs has been implemented with the size of $0.65\;mm{\times}0.55\;mm$. The pure amplifier circuit layout with the reduced size of $0.4\;mm{\times}0.4\;mm$ without the input and output RF pads and DC bais pads has been incorporated as low noise amplication stages in the multi-function RFIC for the active phased array antenna of Ku-band satellite VSAT.

키워드

참고문헌

  1. F. Ellinger, H. Jackel, "Low-cost BiCMOS variable gain LNA at Ku-band with ultra-low power consumption", Microwave Theory and Techniques, IEEE Transactions on, vol. 52, no. 2, pp. 702-708, Feb. 2004. https://doi.org/10.1109/TMTT.2003.822020
  2. V. J. Patel et al., "X-Band low noise amplifier using SiGe BiCMOS technology", Proceedings of CSIC 2005, pp. 49-52, 2005.
  3. K. B. Schad, U. Erben, E. Sonmez et al., "A Ku band SiGe low noise amplifier", Digest of 2004 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, pp. 52-52, 2000.
  4. D. Ma, F. F. Dai, R. C. Jaeger, and J. D. Irwinl, "An 8-18 GHz wideband SiGe BiCMOS low noise amplifier", IEEE MTT-s International Microwave Symposum Digest, pp. 929-932, 2009.
  5. Byung-Wook Min, G. M. Reveiz, "Ka-band BiCMOS 4-bit phase shifter with integrated LNA for phased array T/R modules", Proceedings of IEEE MTT-s Microwave Symposium 2007, vol. 1, pp. 479-482, Jun. 2007. https://doi.org/10.1109/MWSYM.2007.380511
  6. E. Ragonese, A. Scuderi, and G. Palmisano, "A $0.13-{\mu}m$ SiGe BiCMOS LNA for 24-GHz automotive short-range radar", Microwave Conference, EuMC 2008, 38th European, vol. 1, pp. 1537- 1540, Oct. 2008.
  7. A. Babakhani, Xiang Guan, A. Komijani, A. Natarajan, and A. Hajimiri, "A 77-GHz phased-array transceiver with on-chip antennas in silicon: Receiver and antennas", IEEE Journal of Solid-State Circuits, vol. 41, no. 12, pp. 2795-2806, Dec. 2006. https://doi.org/10.1109/JSSC.2006.884811
  8. Q. Liang, G. Niu, J. D. Cressler, and S. Taylor, "On the optimization and design of SiGe HBT cascode low-noise amplifiers", Solid-State Electronics, vol. 49, no. 3, pp. 329-341, Mar. 2005. https://doi.org/10.1016/j.sse.2004.10.002
  9. S. P. Voinigescu et al., "A comparison of Si CMOS, SiGe BiCMOS, and InP HBT technologies for high-speed and millimeter-wave ICs", Digest of 2004 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, pp. 111-114, 2004.
  10. Beom Kyu Ko, Kwyro Lee, "A comparative study on the various monolithic low noise amplifier circuit topologies for RF and microwave applications", IEEE Journal of Solid- State Circuits, vol. 31, no. 8, pp. 1220-1225, Aug. 1996. https://doi.org/10.1109/4.508274