• Title/Summary/Keyword: Ku-Band RFIC

Search Result 6, Processing Time 0.016 seconds

Miniaturized LNB Downconverter MMIC for Ku-band Satellite Communication System using InGaP/GaAs HBT Process

  • Lee, Jei-Young;Lee, Sang-Hun;Lee, Jong-Chul;Kim, Jong-Heon;Lee, Byunje;Park, Chan-Hyeong;Kim, Nam-Young
    • Journal of electromagnetic engineering and science
    • /
    • v.4 no.1
    • /
    • pp.37-42
    • /
    • 2004
  • In this paper, LNB(low noise block) downconverter MMIC is designed for Ku-band satellite communication system using InGaP/GaAs HBT high linear process. Designed MMIC consists of low noise amplifier, double balanced mixer, and IF amplifier with a total chip area of 2.6${\times}$1.1 $\textrm{mm}^2$. Designed MMIC has the characteristics of over 37.5 ㏈ conversion gain, 14 ㏈ noise figure, ripple of 3 ㏈, and output-referred $P_{1dB}$TEX>(1 ㏈ compression power) of 2.5 ㏈m with total power dissipation of 3 V, 50 mA.

Design of Ku-Band BiCMOS Low Noise Amplifier (Ku-대역 BiCMOS 저잡음 증폭기 설계)

  • Chang, Dong-Pil;Yom, In-Bok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.2
    • /
    • pp.199-207
    • /
    • 2011
  • A Ku-band low noise amplifier has been designed and fabricated by using 0.25 um SiGe BiCMOS process. The developed Ku-band LNA RFIC which has been designed with hetero-junction bipolar transistor(HBT) in the BiCMOS process have noise figure about 2.0 dB and linear gain over 19 dB in the frequency range from 9 GHz to 14 GHz. Optimization technique for p-tap value and electro-magnetic(EM) simulation technique had been used to overcome the inaccuracy in the PDK provided from the foundry service company and to supply the insufficient inductor library. The finally fabricated low noise amplifier of two fabrication runs has been implemented with the size of $0.65\;mm{\times}0.55\;mm$. The pure amplifier circuit layout with the reduced size of $0.4\;mm{\times}0.4\;mm$ without the input and output RF pads and DC bais pads has been incorporated as low noise amplication stages in the multi-function RFIC for the active phased array antenna of Ku-band satellite VSAT.

Ku-Band Sub-Harmonically Pumped Single Balanced Resistive Mixers with a Low Pass Filter Using Photonic Band Gap

  • Kim, Jae-Hyuk;Park, Hyun-Joo;Lee, Jong-Chul;Kim, Nam-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.4
    • /
    • pp.599-609
    • /
    • 2000
  • In this paper, sub-harmonically pumped single balanced resistive mixers are presented . Frequency bandwidth is selected for a Ku-band, which is 11.75-12.25GHz for RF, 5.375∼5.625 GHz for LO, and 1 GHz for IF signals. A rat-race hybrid is designed for the accomplishment of single balanced type. A low pass filter (LPF) with photonic band gap(PBG) structure is used for good conversion loss and unwanted harmonics suppression. Two types of mixers are suggested, which are one with no gate bias for no DC power consumption and the other with the IF amplifier for conversion gain. When a LO signal with the power of 6 dBm at 5.5 GHz is injected, a conversion loss of 12.17dB and a conversion gain of 7.83 dB are obtained for each mixer. For the both mixers , LO to RF isolation of 20 dB and LO to IF isolation of 60dB are obtained. With the RF power of -30dBm to -3dBm, the mixer shows linear characteristics region of IF. this mixer can be applied for Ku-band and other microwave communication systems.

  • PDF

The Double Balance Mixer Design with the Characteristics of Low Intermodulation Distortion, and Wide Dynamic Range with Low LO-power using InGaP/GaAs HBT Process (InGaP/GaAs HBT공정을 이용하여 낮은 LO파워로 동작하고 낮은 IMD와 광대역 특성을 갖는 이중평형 믹서설계)

  • S. H. Lee;S. S. Choi;J. Y. Lee;J. C. Lee;B. Lee;J. H. Kim;N. Y. Kim;Y. H. Lee;S. H. Jeon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.9
    • /
    • pp.944-949
    • /
    • 2003
  • In this paper, the double balance mixer(DBM) for Ku-band LNB using InGaP/GaAs HBT process is suggested for the characteristics of low DC power consumption, low noise figure, low intermodulation distortion and wide dynamic range. The 5 dB conversion gain, 14 dB NF, bandwidth 17.9 GHz and 50.34 dBc IMD are obtained under RF input power of -23 dBm, with bias condition as 3 V and 16 mA. The linearity of InGaP/GaAs HBT, the broad band input matching scheme and the optimization of bias point result in the low IMD, the broad bandwidth and the low power consumption characteristics.

Novel K/Ka Bandpass Filters using LIGA Micromachined Process

  • Park, K. Y.;Park, J. Y.;Choi, H. K.;Lee, J.C.;Lee, B.;Kim, J. H.;Kim, N. Y.;Park, J. Y.;Kim, G. H.;Kim, D. W.;Bu, J. U.;Chung, K. W.
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.6
    • /
    • pp.969-975
    • /
    • 2000
  • New class of three dimensional (3-D) micromachined microwave planar filters at K and Ka-band are presented using LIGA micro-machined process. The K-and Ka-band filters show wide bandpass characteristics of~36% and ~39% with the insertion loss 1.26dB at 19.11GHz and 1.7dB at GHz, respectively. These filters can be applicable in high power MMIC of MIMIC.

  • PDF

Non Leaky Conductor-Backed CPW Based on Thin Film Polyimide on CMOS-grade Silicon for Ku-band Application

  • Lee, Sang-No;Lee, Joon-Ik;Yook, Jong-Gwan;Kim, Yong-Jun
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.4
    • /
    • pp.165-169
    • /
    • 2004
  • This paper reports a miniaturized conductor-backed CPW (CBCPW) bandpass filter based on a thin film polyimide layer coated on CMOS-grade silicon. With a 20 ${\mu}{\textrm}{m}$-thick polyimide interface layer and back metallization on the CMOS-grade silicon, the interaction of electromagnetic fields with the lossy silicon substrate has been isolated, and as a result a low-loss and low-dispersive CBCPW line has been obtained. Measured attenuation constant at 20 GHz is below 1.2 ㏈/cm, which is compatible with the CPW on GaAs. In addition, by using the proposed CBCPW geometry, miniaturized BPF for Ku band application is designed and its measured frequency response shows excellent agreement with the predicted value with validating the performances of the proposed CBCPW geometry for RFIC interconnects and filter applications.