DOI QR코드

DOI QR Code

Changes of Leaf Characteristics, Pigment Content and Photosynthesis of Forsythia saxatilis under Two Different Light Intensities

광량 차이에 의한 산개나리의 엽 특성과 광색소 함량 및 광합성 변화

  • Han, Sim-Hee (Department of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Kim, Du-Hyun (Department of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Kim, Gil Nam (Department of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Byun, Jae-Kyung (Department of Forest Conservation, Korea Forest Research Institute)
  • 한심희 (국립산림과학원 산림유전자원부) ;
  • 김두현 (국립산림과학원 산림유전자원부) ;
  • 김길남 (국립산림과학원 산림유전자원부) ;
  • 변재경 (국립산림과학원 산림보전부)
  • Received : 2011.07.05
  • Accepted : 2011.07.15
  • Published : 2011.12.31

Abstract

Forsythia saxatilis is a Korean endemic plant designated as rare and endangered by the Korea Forest Service (KFS). Growth and physiological characteristics of F. saxatilis were investigated under two different light intensities in order to figure out an appropriate growth environment for conservation and restoration of the species in its natural habitat. Shoot length, leaf size and weight, photosynthetic pigment content and photosynthetic parameters were measured for F. saxatilis grown at two experimental plots under relative light intensities (RLI) of 20% and 60% of the full sun, respectively. Fresh leaf weight of plants grown under high relative light intensities (RLI-60) exceeded that of plants grown at 20% RLI. The ratio of fresh leaf weight to leaf size at RLI-60 was 1.47 times superior comparing to that recorded at RLI-20. The content of photosynthetic pigments such as chlorophyll a, b and carotenoid were higher in plants grown at RLI-60, whereas the ratio of total chlorophyll to carotenoid content was higher in the leaves at RLI-20. Photosynthetic rate, stomatal conductance and transpiration rate at RLI-60 were, respectively, 2.5, 2.65 and 1.79 times higher comparing to those recorded at RLI-20. Water use efficiency, however, was higher at RLI-20. The chlorophyll/nitrogen ratio was 1.83 times higher at RLI-20 than at RLI-60. In contrast, the ratio of net photosynthesis to chlorophyll content at RLI-60 was 2.58 times higher than that of RLI-20. In conclusion, light intensity might be the major factor affecting growth and physiological characteristics of F. saxatilis grown under canopy of tall tree species.

본 연구의 목적은 우리나라 특산식물이면서 희귀식물인 산개나리의 유전자원 보존 및 복원을 위한 생육 환경 특성을 구명하기 위한 것으로, 서로 다른 광 조건을 가진 환경에 식재된 산개나리의 생장과 생리적 특성을 조사 분석하였다. 산개나리 시험구내 광량은 전광의 20%, 60%로 구성되었다. 산개나리의 생리적 특성으로 당년지 길이, 잎 크기 및 무게, 광색소 함량 및 잎 내 질소 함량, 광합성 특성을 분석하였다. 광량이 다른 두 시험구에서 측정한 산개나리의 잎 무게는 전광의 60% 광량을 가진 시험구의 잎이 20% 시험구 잎보다 무거웠으며, 잎 무게와 크기의 비율은 전광의 60% 시험구가 20% 시험구보다 1.47배 컸다. 산개나리 잎의 엽록소 a와 b 함량과 카로테노이드 함량 모두 전광의 60% 광량을 가진 시험구에서 높게 나타났으며, 총 엽록소 함량과 카로테노이드 함량의 비는 전광의 20% 시험구가 60% 시험구보다 높았다. 산개나리의 두 시험구에서 측정한 광합성 속도는 전광의 60% 광량을 가진 시험구가 20% 시험구보다 2.5배 이상 높았으며, 기공전도도와 증산 속도도 광합성 속도와 마찬가지로 전광의 60% 시험구가 20% 시험구보다 각각 2.65배와 1.79배 높았다. 그러나 수분이용효율은 전광의 20% 광량을 가진 시험구가 60% 시험구보다 높았다. 산개나리 잎의 질소 함량에 대한 총 엽록소 함량의 비는 20% 시험구가 60% 시험구보다 1.83배 높았으나, 총 엽록소 함량에 대한 순 광합성 량의 비는 60% 시험구가 20% 시험구보다 2.58배 높은 값을 나타냈다. 결론적으로 산개나리의 생장과 생리적 특성에 영향을 주는 가장 큰 요인은 광량이며, 광량이 높은 조건에서 산개나리의 생장과 생리적 특성은 개선될 수 있다고 판단된다.

Keywords

References

  1. 기상청. 2010. 기상연보. pp. 310.
  2. 김귀순. 2008. 보호식물 산개나리(Forsythia saxatilis)의 자생지환경조사 및 삽목증식. 한국식물인간환경학회지 11(1): 27-34.
  3. 이병천. 2008. 한국 희귀식물 목록집. 산림청 국립수목원. pp. 332
  4. 이상태, 김무열, 홍석표. 1982. 개나리(Forsythia koreana Nakai)와 산개나리(F. saxatilis Nakai)의 분류학적 연구. 한국식물분류학회지 12(2): 51-62.
  5. 이유미, 이원열. 2000. 희귀 및 멸종위기 식물도감. 산림청 국립수목원. pp. 255.
  6. 이창복. 1980. 대한식물도감. 향문사. pp. 990.
  7. Abrams, M.D. and Kubiske, M.E. 1990. Leaf structural characteristics of 31 hardwood and conifer tree species in central Wisconsin: Influence of light regime and shadetolerance rank. Forest Ecology and Management 31: 245- 253. https://doi.org/10.1016/0378-1127(90)90072-J
  8. Anderson, J.M. and Osmond, C.B. 1987. Shade-sun responses: compromises between acclimation and photoinhibition. pp. 1-38. In: Kyle, D.J., Osmond, C.B., Arntzen, C.J. ed. Photoinibition. Elsevier, Amsterdam.
  9. Beyschlag, W., Barnes, P.W., Ryel, R.J., Caldwell, M.M. and Flint, S.D. 1990. Plant competition for light analyzed with a multispecies canopy model. II. Influence of photosynthetic characteristics on mixtures of wheat and wild oat. Oecologia 82: 374-380. https://doi.org/10.1007/BF00317486
  10. Boller, B.C. and Nsberger, J. (1985) Photosynthesis of white clover leaves as influenced by canopy position, leaf age, and temperature. Annals of Botany (London) 56: 19- 27.
  11. Bos, H.J., Tijani-Eniola, H. and Struik, P.C. 2000. Morphological analysis of leaf growth of maize: responses to temperature and light intensity. Netherlands Journal of Agricultural Science 48: 181-198.
  12. Czeczugaa, B. 1987. Carotenoid contents in leaves grown under various light intensities. Biochemical Systematics and Ecology 15: 523-527. https://doi.org/10.1016/0305-1978(87)90098-6
  13. Demmig-Adams, B. 1998. Survey of thermal energy dissipation and pigment composition in sun and shade leaves. Plant Cell Physiology 39: 474-482. https://doi.org/10.1093/oxfordjournals.pcp.a029394
  14. Evans, J.R. 1989. Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78: 9-19. https://doi.org/10.1007/BF00377192
  15. Ford, E.D. and Diggle, P.J. 1981. Competition for light in a plant monoculture modelled as a spatial stochastic process. Annals of Botany 48: 481-500.
  16. Frak, E., Le Roux, X., Millard, P., Adam, B., Dreyer, E., Escuit, C., Sinoquet, H., Vandame, M. and Varlet-Grancher, C. 2002. Spatial distribution of leaf nitrogen and photosynthetic capacity within the foliage of individual trees: disentangling the effects of local light quality, leaf irradiance, and transpiration. Journal of Experimental Botany 378: 2207-2216.
  17. Gnard, M., Baret, F. and Simon, D. 2000. A 3D peach canopy model used to evaluate the effect of tree architecture and density on photosynthesis at a range of scales. Ecological Modelling 128: 197-209. https://doi.org/10.1016/S0304-3800(99)00232-X
  18. Gonalves, B., Correia, C.M., Silva, A.P., Bacelar, E.A., Santos, A. and Moutinho-Pereira, J.M. 2008. Leaf structure and function of sweet cherry tree (Prunus avium L.) cultivars with open and dense canopies. Scientia Horticulturae 116: 381-387. https://doi.org/10.1016/j.scienta.2008.02.013
  19. Han, S.H., Kim, D.H. Byun, J.K. and Jang, K.H. 2011. Major reason for the current decline of the rare and endangered Forsythia saxatilis population at Bukhansan: habitat deterioration. Proceedings of the International Symposium for Strategy on Development of Forest Genetic Resources against Climate Change. May 30-June 3, 2011, Ramada Plaza Hotel, Suwon, Korea. Korea Forest Research Institute. pp. 181.
  20. Harper, J.L. and Clatworthy, J.N. 1963. The competitive biology of closely related species VI Analysis of the growth of Trifolium repens and T. fragiferum in pure and mixed populations. Journal of Experimental Botany 14: 172-190. https://doi.org/10.1093/jxb/14.1.172
  21. Hikosaka, K. and I. Terashima. 1995. A model of the acclimation of photosynthesis in the leaves of $C_{3}$ plants to sun and shade with respect to nitrogen use. Plant Cell Environment 18: 605-618. https://doi.org/10.1111/j.1365-3040.1995.tb00562.x
  22. Hixcox, J.D. and Israelstam, G.F. 1978. A method for the extraction of chlorophyll from leaf tissue without maceration. Canadian Journal of Botany 57: 1332-1334.
  23. Jackson, L.W.R. 1967. Effect of Shade on Leaf Structure of Deciduous Tree Species. Ecology 48: 498-499. https://doi.org/10.2307/1932686
  24. Joggi, D., Hofer, U. and Nsberger, J. 1983. Leaf area index, canopy structure and photosynthesis of red clover (Trifolium pratense L.). Plant Cell Environment 6: 611- 616.
  25. Johnson, J.D., Tognetti, R., Michelozzi, M., Pinzauti, S., Minotta, G. and Borghetti, M. 1997. Ecophysiological responses of Fagus sylvatica seedlings to changing light conditions. II. The interaction of light environment and soil fertility on seedling physiology. Physiologia Plantarum 101: 124- 134. https://doi.org/10.1111/j.1399-3054.1997.tb01828.x
  26. Kayama, M., Sasa, K. and Koike, T. 2002. Needle life span, photosynthetic rate and nutrient concentration of Picea glehnii, P. jezoensis and P. abies planted on serpentine soil in northern Japan. Tree Physiology 22: 707-716. https://doi.org/10.1093/treephys/22.10.707
  27. Liang, Z.S., Yang, J.W., Shao, H.B. and Han, R.L. 2006. Investigation on water consumption characteristics and water use efficiency of poplar under soil water deficits on the Loess Plateau. Colloids and Surfaces B: Biointerfaces 53: 23-28. https://doi.org/10.1016/j.colsurfb.2006.07.008
  28. Loach, K. 1967. Shade tolerance in tree seedlings. I. leaf photosynthesis and respiration in plants raised under artificial shade. New Phytologist 66: 607-621. https://doi.org/10.1111/j.1469-8137.1967.tb05432.x
  29. Loach, K. 1970. Shade tolerance in tree seedlings. I. Growth analysis of plants raised under artificial shade. New Phytologist 69: 273-286. https://doi.org/10.1111/j.1469-8137.1970.tb02426.x
  30. Mendes, M.M., Gazarini, L.C. and Rodrigues, M.L. 2001. Acclimation of Myrtus communis to contrasting Mediterranean light environments-effects on structure and chemical composition of foliage and plant water relations. Environmental and Experimental Botany 45: 165-178. https://doi.org/10.1016/S0098-8472(01)00073-9
  31. Muraoka, H., Tang, Y., Kolzumi, H. and Washitani, I. 1997. Combined effects of light and water availability on photosynthesis and growth of Arisaeme heterophyllum in the forest understory and an open site. Oecologia 112: 26-34. https://doi.org/10.1007/s004420050279
  32. Naidu, S.L. and DeLucia, E.H. 1998. Physiological and morphological acclimation of shade-grown tree seedlings to late-season canopy gap formation. Plant Ecology 138: 27-40. https://doi.org/10.1023/A:1009780114992
  33. Niinemets, U. 1997. Acclimation to low irradiance in Picea abies: influences of past and present light climate on foliage structure and function. Tree Physiology 17: 723-732. https://doi.org/10.1093/treephys/17.11.723
  34. Niinemets, U., Kull, O. and Tenhunen, J.D. 1998. An analysis of light effects on foliar morphology, physiology and light interception in temperate deciduous woody species of contrasting shade tolerance. Tree Physiology 18: 681-696. https://doi.org/10.1093/treephys/18.10.681
  35. Osunkoya, O.O., Ash, J.E., Hopkins, M.S. and Graham, A.W. 1994. Influence of seed size and seedling ecological attributes on shade-tolerance of rain-forest tree species in northern Queensland. Journal of Ecology 82: 149- 163. https://doi.org/10.2307/2261394
  36. Pearcy, R.W. and Sims, D.A. 1994. Photosynthetic acclimation to changing environments: scaling from the leaf to the whole plant. pp. 145-174. In: M.M. Caldwell, and R.W. Pearcy, ed. Exploitation of Environmental Heterogeneity by Plants: Ecophysiological Processes Above and Below Ground. Academic Press, San Diego.
  37. Ryel, R.J., Barnes, P.W., Beysehlag, W., Caldwell, M.M. and Flint, S.D. 1990. Plant competition for light analyzed with a multispecies canopy model. I. Model development and influence of enhanced UV-B conditions on photosynthesis in mixed wheat and wild oat canopies. Oecologia 82: 304-310. https://doi.org/10.1007/BF00317475
  38. Reich, P.B., Tjoelker, M.G., Walters, M.B., Vanderklein, D.W. and Buschena, C. 1998. Close association of RGR, leaf and root morphology, seed mass and shade tolerance in seedlings of nine boreal tree species grown in high and low light. Functional Ecology 12: 327-338. https://doi.org/10.1046/j.1365-2435.1998.00208.x
  39. Wayne, P.M. and Bazzaz, F.A. 1993. Birch seedling responses to daily time courses of light in experimental forest gaps and shadehouses. Ecology 74: 1500-1515. https://doi.org/10.2307/1940078
  40. Wierman, C.A. and Oliver, C.D. 1979. Crown stratification by species in even-aged mixed stands of Douglas-firwestern hemlock. Canadian Journal of Forest Research 9: 1-9. https://doi.org/10.1139/x79-001