DOI QR코드

DOI QR Code

CO2 Absorption by Alkali-modified Amino Acid Salts

알칼리금속을 함침시킨 아미노산 염 수용액의 이산화탄소 흡수특성 연구

  • Lim, Yun-Hui (Department of Applied Environmental Science, Center for Environmental Studies, Kyung Hee University) ;
  • Jo, Young-Min (Department of Applied Environmental Science, Center for Environmental Studies, Kyung Hee University) ;
  • Park, Joon-Seok (Department of Environmental Engineering, Kangwon National University)
  • 임윤희 (경희대학교 환경응용과학과 환경연구센터) ;
  • 조영민 (경희대학교 환경응용과학과 환경연구센터) ;
  • 박준석 (강원대학교 환경공학과)
  • Received : 2011.08.01
  • Accepted : 2011.09.01
  • Published : 2011.10.10

Abstract

The present study attempted to impregnate alkali metals to amino acid in order to improve $CO_2$ absorption capacity. A used amino acid was glycine, of which pH increased up to about 11 with the addition of alkalies. $CO_2$ absorption capacity of amino acid salts was evaluated in a batch and a continuous process. The absorption capacity appeared in turns as; Sodium Glycinate ${\geq}$ Lithium Glycinate > Potassium Glycinate. Amino acid salts showed lower absolute capacity of $CO_2$ absorption than primary amine (Monoethanolamine) at $20^{\circ}C$. In a continuous absorption with 10% $CO_2$ flow, the increasing the reaction temperature, the increasing rate of absorption for amino and was higher that of than amino absorbent.

본 연구는 이산화탄소 흡수성능을 향상시키기 위하여 아미노산에 알칼리금속을 함침시키는 것이다. 사용된 아미노산은 글리신이었으며, 알칼리성분 추가에 따라 pH가 11까지 증가하였다. 시험제조한 아미노산 염은 회분식과 연속식 흡수공정에서 이산화탄소의 포집능을 평가하였다. 치환된 금속종류에 따른 이산화탄소 흡수량은 Sodium Glycinate (Na-Gly) ${\geq}$ Lithium Glycinate (Li-Gly) > Potassium Glycinate (K-Gly) 순으로 나타났다. 흡수반응온도에 따른 $CO_2$ 흡수량 시험결과, $20^{\circ}C$에서는 알칼리금속을 함침시킨 아미노산 염이 1차 아민보다 약간 낮은 흡수능을 보였으나, 연속식 흡수반응기에서는 10% $CO_2$ 흐름에 대하여 반응기 내부온도가 상승하면서($40^{\circ}C$, $60^{\circ}C$) 아미노산 염의 흡수량 증가폭이 아민에 비하여 상대적으로 크게 나타났다.

Keywords

Acknowledgement

Grant : 실내공기질 개선을 위한 저농도 CO2 흡착선택도 향상 연구

Supported by : 한국연구재단

References

  1. W. J. Jang, Y. I. Yoon, S. D. Park, Y. W. Rhee, and I. H. Baek, J. Korean Ind. Eng. Chem., 19, 645 (2008).
  2. W. J. Ryu, K. H. Han, W. K. Choi, J. S. Lee, and S. J. Park, Korean Chem. Eng. Res., 47, 795 (2009).
  3. Y. H. Lim, K. M. Lee, H. S. Lee, and Y. M. Jo, J. KOSAE, 26, 286 (2010). https://doi.org/10.5572/KOSAE.2010.26.3.286
  4. S. Ma'mun, H. F. Svendsen, K. A. Hoff, and O. Juliussen, Energy Convers. Manage., 48, 251 (2007). https://doi.org/10.1016/j.enconman.2006.04.007
  5. I. H. Lee, S. I. Kim, and J. Y. Park, J. Korean Ind. Eng. Chem., 18, 239 (2007).
  6. T. Pintola, P. Tontiwachwuthikul, and A. Meisen, Gas Sep. Purif., 7, 47 (1993). https://doi.org/10.1016/0950-4214(93)85019-R
  7. Y. M. Cho, S. C. Nam, Y. I. Yoon, S. J. Moon, and I. H. Baek, Appl. Chem. Eng., 21, 195 (2010).
  8. H. J. Song, S. M. Lee, H. C. Song, S. W. Ahn, and J. W. Park, J. Energy Eng., 14, 219 (2005).
  9. B. R. Strazisar, R. R. Anderson, and C. M. White, Energy Fuels, 17, 1034 (2003). https://doi.org/10.1021/ef020272i
  10. U. E. Aronu, H. F. Svendsen, and K. A. Hoff, Int. J. Greenhouse Gas Control, 4, 771 (2010). https://doi.org/10.1016/j.ijggc.2010.04.003
  11. P. S. Kumar, J. A. Hogendoorn, G. F. Versteeg, and P. H. M. Feron, AlChE Journal, 49, 203 (2003). https://doi.org/10.1002/aic.690490118
  12. H. J. Song, S. M. Lee, J. H. Lee, J. W. Park, K. R. Jang, J. G. Shim, and J. H. Kim, Korean Soc. Environ. Eng., 31, 505 (2009).
  13. J. V. Holst, G. F. Versteeg, D. W. F. Brilman, and J. A. Hogendoorn, Chem. Eng. Sci., 64, 59 (2009). https://doi.org/10.1016/j.ces.2008.09.015
  14. S. K. Oh, Y. W. Rhee, S. C. Nam, Y. I. Yoon, and Y. E. Kim, J. Energy Eng., 17, 251 (2008).
  15. T. McKee and J. R. McKee, Biochemistry, 3/E, 80pp, Life Science Publishing Co. (2004).
  16. L. G. Wade, Jr., Organic Chemistry, 1299pp, Prentice Hall (2001).
  17. H. W. Ko and H. K. Juang, J. Appl. Electrochem., 13, 725 (1983). https://doi.org/10.1007/BF00615821
  18. R. J. Hook, Ind. Eng. Chem. Res., 36, 1779 (1997). https://doi.org/10.1021/ie9605589
  19. J. V. Holst, S. R. A. Kersten, and K. J. A. Hogendoorn, J. Chem. Eng. Data, 53, 1286 (2008). https://doi.org/10.1021/je700699u
  20. C. Mathonat, V. Majer, A. E. Mather, and J. P. E. Grolier, Fluid Phase Equilib., 140, 170 (1997).
  21. S. W. Ahn, Y. K. Kim, H. C. Song, and J. W. Park, Energy Eng. J., 6, 203 (1997).